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Abstract

Plant sap-feeding insects (Hemiptera) rely on obligate bacterial symbionts that provision nutrients. Some of these symbionts are
ancient and have evolved tiny genomes, whereas others are younger and retain larger, dynamic genomes. Baumannia cicadellinicola,
an obligate symbiont of sharpshooter leafhoppers, is derived from a relatively recent symbiont replacement. To better understand
evolutionary decay of genomes, we compared Baumannia from three host species. A newly sequenced genome for Baumannia from
the green sharpshooter (B-GSS) was compared with genomes of Baumannia from the blue-green sharpshooter (B-BGSS, 759
kilobases [kb]) and from the glassy-winged sharpshooter (B-GWSS, 680 kb). B-GSS has the smallest Baumannia genome sequenced
to date (633 kb), with only three unique genes, all involved in membrane function. It has lost nearly all pathways involved in vitamin
and cofactor synthesis, as well as amino acid biosynthetic pathways that are redundant with pathways of the host or the symbiotic
partner, Sulcia muelleri. The entire biosynthetic pathway for methionine is eliminated, suggesting that methionine has become a
dietary requirement for hosts. B-GSS and B-BGSS share 33 genes involved in bacterial functions (e.g., cell division, membrane
synthesis, metabolite transport, etc.) that are lost from the more distantly related B-GWSS and most other tiny genome symbionts.
Finally, pairwise divergence estimates indicate that B-GSS has experienced a lineage-specific increase in substitution rates. This
increase correlates with accelerated protein-level changes and widespread gene loss. Thus, the mode and tempo of genome
reduction vary widely among symbiont lineages and result in wide variation in metabolic capabilities across hosts.

Key words: Baumannia cicadellinicola, methionine, GC content, selection, substitution rates, DNA repair.

Introduction

Many insects with specialized diets rely on microbial symbionts

are presumably the result of reduced selection, increased
mutation rates, and stochastic processes (Moran 1996;

to supply unavailable nutrients. Dramatic genome degenera-
tion is inevitable in these symbionts as they converge upon a
minimal gene set for nutrition and basic, albeit incomplete,
cellular functions (McCutcheon and Moran 2012). However,
gene loss can be uneven, and lineages within a single symbi-
ont clade can differ by tens to hundreds of genes (Moran and
Bennett 2014). The losses of metabolic capabilities in some
symbionts are associated with their host’s acquisition of addi-
tional symbiotic partners or of novel trophic niches (van Ham
et al. 1997; Sabree et al. 2012; Husnik et al. 2013; Sloan and
Moran 2013). Other differences among symbiont genomes

Sabree et al. 2010; Rio et al. 2012; Bennett et al. 2014;
Dietz et al. 2015; Gottlieb et al. 2015; Wernegreen 2015;
Williams and Wernegreen 2015). For lineages within a symbi-
ont clade, it remains unclear to what extent gene sets are
conserved due to shared functional constraint and to what
extent they reflect ecological differences among hosts.
Sap-feeding insects in the Auchenorrhyncha (Hemiptera:
Suborder) harbor a diversity of bacterial symbionts that are
responsible for making the ten essential amino acids (EAA)
that are generally rare in plant sap and that animals cannot
synthesize de novo (see McCutcheon and Moran 2010). These
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Fic. 1.—Genome size and protein coding content of the obligate bacterial symbionts in insects with genomes below one megabase. Leafhopper
symbionts and other Auchenorrhyncha are color-coded (see inset legend). See text for references.

symbiont lineages possess both the tiniest and some of the
largest genomes of insect obligate symbionts (fig. 1: Wu et al.
2006; McCutcheon and Moran 2007; McCutcheon et al.
2009; Bennett and Moran 2013; Koga and Moran 2014,
Van Leuven et al. 2014). In the leafthoppers (Cicadellidae),
one large group within Auchenorrhyncha, hosts typically
harbor two symbionts that have partitioned EAA synthesis.
Generally, the oldest associate, Sulcia  muelleri
(Bacteroidetes), synthesizes eight EAAs, while a diversity of
coresident symbionts are responsible for the remaining two,
methionine and histidine (McCutcheon and Moran 2007,
2010; Bennett and Moran 2013; Chang et al. 2015). One
of the largest genomes of an insect obligate symbiont
sequenced to date belongs to Baumannia cicadellinicola
(Gammaproteobacteria) (fig. 1), which replaced Nasuia
deltocephalinicola (Betaproteobacteria) 80-175 Ma in xylem-
feeding sharpshooter leafhoppers (Cicadellinae: Moran et al.
2003; Takiya et al. 2006). Baumannia lineages variably encode
pathways for considerable cellular autonomy and redundant
metabolisms with their symbiotic partners (Wu et al. 2006;
Bennett et al. 2014). Thus, Baumannia offers the opportunity
to investigate lineage-specific patterns of genome degrada-
tion over millions of years of evolution.

To better understand how symbiont lineages diverge as
their genomes lose genes, we sequenced Baumannia from
the green sharpshooter (GSS; Draeculacephala minerva), for
which the coresident Sulcia genome was previously se-
guenced (Woyke et al. 2010). GSS feeds on xylem of grasses
and is a viticulture pest in the Southwestern United States and
Hawaii. Baumannia-GSS (B-GSS) was selected for its relatively
close  phylogenetic  relationship  to  Graphocephala

atropunctata (B-BGSS), which has the largest known
Baumannia genome (figs. 1 and 2B: Takiya et al. 2006;
Bennett et al. 2014). Both are placed in the Cicadellini tribe.
The more distantly related Baumannia of Homalodisca
vitripennis (B-GWSS; Proconiini) was used to root genomic
comparison between B-GSS and B-BGSS.

Genome Features of B-GSS

B-GSS contains a circular 632,672 bp chromosome (figs. 1 and
2A) that is over 50 kb smaller than the other two sequenced
Baumannia genomes (fig. 1). Except for gene deletions, all
three genomes are perfectly syntenic. B-GSS encodes 545
predicted protein-coding genes, 47 tRNAs, two rRNA op-
erons, an ssrA, and seven predicted pseudogenes. B-GSS
also contains a 3.5 kb plasmid (pB-GSS), encoding five genes
involved in replication, heat-shock, and phospholipase and
protease-like functions. All Baumannia lineages harbor a sim-
ilar plasmid. The pB-GSS is similar in protein coding content to
the one reported from B-BGSS; however, pB-BGSS is nearly
twice the size (6.5 kb) due to gene duplications of repA and
ibpA (Bennett et al. 2014). The B-GSS genome and plasmid
are available on GenBank under accessions CP011787-
CP011788.

Lineage-Specific Gene Losses

Genome reduction in the different Baumannia lineages reveals
lineage-specific patterns of gene loss. The more highly
reduced B-GSS genome does not contain a simple subset of
the genes found in the two previously sequenced, larger
Baumannia genomes (fig. 24). Within this set, B-GSS retains
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Fic. 2—Genome and phylogenetic placement of B-GSS strain. (A) Genome plot of genes encoded by B-GSS. The outer two rings show genes encoded
on the forward and reverse strand, respectively. The inner graph shows genome-wide GC skew. Genes are color-coded according to the Baumannia
genomes that share them: gray = core shared; blue = B-GSS and B-BGSS; yellow = B-GSS and B-GWSS; and red = B-GSS only. (B) Phylogenetic placement of
Baumannia strains inferred from 16S rRNA (adapted from Bennett et al. 2014). Strains for which sequenced genomes exist are labeled. Bootstrap support
values are indicated by nodal dots (black > 75, gray = 50-74, and white = no support). Outgroups have been trimmed.

only three unique genes, all involved in membrane structure
and transport (ompC and inner membrane proteins). B-GSS
and the more distantly related B-GWSS uniquely share only
five genes, involved in translational machinery (epmAB and
hfIX) and cellular membrane production (yidD and /pp). In
contrast, B-GSS and the more closely related B-BGSS uniquely
share 33 genes. These involve bacterial functions that are
generally lost from the smallest genomes (Moran and
Bennett 2014), including DNA replication initiation (dnaA),
cell division (ftsABINQWX), cell envelope synthesis (p/sX and
mrcB), cell growth (ratA), and metabolite transport (g/tP and
mrcB), among other functions (e.g., complete ubiquinone
synthesis). The shared retention by B-GSS and B-BGSS of ca-
pabilities for independent cellular function suggests some level
of constraint on the loss of certain genetic capabilities from
the symbiont genome within the Cicadellini host lineage.
Possibly Baumannia strains in this host clade are under selec-
tion to maintain certain capabilities; the host may be unable to
compensate for the loss of these functions (Zientz et al. 2001;
Bennett and Moran 2015).

The unique gene losses in the B-GSS genome further indi-
cate that it is converging on the essential functions found in
other coprimary symbionts that have far smaller genomes.
B-GSS has lost 89 genes that span a broad range of processes,
including translation (tgt), membrane and transport (tamAB,
cysW, and yciQ), cell division (tig and ftsEX), stringent response

(relA), and DNA repair (ung and mutM). Notably, roughly half
of all genes lost are involved in pathways and peripheral
metabolisms related to vitamin and amino acid synthesis
and transport. B-GSS has lost the pathways for B vitamins
(biotin, folic acid, pentothenate, and thiamine) and other
cofactors (heme). It has further been stripped of amino acid
synthesis pathways that are redundant with those of its
symbiotic partners (e.g., phenylalanine, cysteine, and lysine;
Woyke et al. 2010). This suggests that, while the synthesis of
additional vitamins and cofactors might be beneficial for hosts
using a xylem diet (Wu et al. 2006), it does not appear to be
essential in the long-term. Instead the process of genome
decay in auchenorrhynchan symbionts appears to move
generally toward limited gene sets involved in central informa-
tional processes and synthesizing essential nutrients and little
else.

Unique Loss of EAA Biosynthesis

Remarkably, B-GSS appears to have lost the ability to synthe-
size methionine. Animals including insects generally lack this
capability, and the pathway also is absent from the coresident
symbiont, S. muelleri, from the GSS insect host (Woyke et al.
2010). This is the first reported instance of an EAA pathway
lost from all members of an auchenorrhynchan symbiosis, and
from a sap-feeding insect symbiosis in general (reviewed by
McCutcheon and Moran [2010] and Bennett and Moran

298  Genome Biol. Evol. 8(1):296-301.  doi:10.1093/gbe/ew159  Advance Access publication August 10, 2015

9T0Z ‘TT YoLe |\ Uo [ooyasve eueiuown e /B1o'seulnofpioyxo-agh/:dny woly pspeojumoq


http://gbe.oxfordjournals.org/

Z
=
=
B
=]
@)
>
m
a)
Z
<
=
@)
(@)
—
<
M
m
>
o
Z
m
)

Obligate Symbionts of Sharpshooter Leafhoppers

GBE

I i
B-BGSS

‘m\’c' 2 1’\9? »® il p\se'

B-GSs (D I

me*‘}x

B-GWSs (-0 T - G

Fic. 3.—Orthologous gene retention and losses between Baumannia strains, highlighting the methionine synthesis. Genes in gray are shared between
all three genomes, whereas genes in blue are shared by at least two strains (see connecting lines). Genes that are shaded orange are involved in methionine

synthesis.

[2013]). B-GWSS retains the entire transsulfuration pathway
for methionine syntheses (metABCE), whereas B-BGSS has lost
the initiating genes, metAB (fig. 3; Bennett et al. 2014). B-GSS
has gone further and purged the remaining two (fig. 3;
metCE). The loss of metE is particularly striking, as it is the
terminal catabolic step in methionine biosynthesis. In some
other sap-feeding insect symbionts, it is the only gene retained
(aphids and mealybugs; Shigenobu et al. 2000; Hansen and
Moran 2011; McCutcheon and von Dohlen 2011). Itis unclear
how GSS acquires methionine. One hypothesis is that the host
insect produces it on its own, possibly through microbial
horizontal gene transfers (Husnik et al. 2013; Sloan and
Moran 2014). An alternative explanation, that methionine is
obtained from additional coresident symbionts, although
none has been found despite deep sequencing of the insect
bacteriomes. Alternatively, GSS may acquire methionine from
its food. Xylem feeders have dramatically higher feeding rates
than do phloem feeders (up to 1,000x their body weight per
day), and they directly assimilate 99% of monomeric amino
acids from xylem sap (Raven 1983; Andersen et al. 1989).
Methionine is available in xylem at low concentrations, and
the amino acid profile of food plants is known to change
feeding behavior of other sharpshooter leafhopper species
(Brodbeck et al. 1990). Plants also vary in their phloem content
of reduced sulfur compounds, including methionine, and
grasses, the preferred hosts of GSS, sometimes have relatively
high levels (Bourgis et al. 1999). Thus, elimination of this
pathway from the B-GSS genome may be linked to a shift
in trophic niche of the host insect.

Accelerated Rates of Molecular
Evolution in B-GSS

Given that all strains are of the same origin and age, gene loss
is accelerated in B-GSS. The mechanisms driving this pattern
are unclear. One hypothesis is that increased mutation rates
underlie strain differences between Baumannia in the
Cicadellini hosts. B-GSS has lost additional repair genes, parti-
cularly mutM that leads to increased GC to TA mutations
(Michaels et al. 1991). Indeed, GC content is much lower in
B-GSS than it is B-BGSS (31.9% vs. 39%), and it is slightly
lower than in B-GWSS (33.2%). Thus, changes in patterns of

molecular evolution may underlie patterns of gene loss
(Moran et al. 2009).

Divergence rates are generally high in symbionts, and have
been reported to increase in strains that have lost parts of DNA
repair mechanisms (Clark et al. 1999; Itoh et al. 2002; Moran
et al. 2009; Sloan and Moran 2012, 2013; Gottlieb et al.
2015; Santos-Garcia et al. 2015). To test this between B-
GSS and B-BGSS, we estimated pairwise synonymous substi-
tution (dS) and nonsynonymous (dN) for the core genes
shared by all three strains. For each pair-wise genome com-
parison, dS differs significantly (fig. 4; P < 0.0001). The lower
divergence estimates for B-BGSS versus B-GSS support the
closer relationship of their hosts (Takiya et al. 2006).
However, for the B-GSS versus B-GWSS comparison, both
the dS and number of loci at which divergence is saturated
(dS > 2 for 54% of loci) are significantly higher than they are
for comparison between B-BGSS and B-GWSS (21%), or B-
BGSS and B-GSS (15%). Similarly, dN is significantly higher for
B-GSS versus B-GWSS, than for other pair-wise estimates
(P<0.0001). Taken together, these results indicate a
genome-wide shift in substitution rates in the B-GSS strain.
Although some observed nonsynonymous substitutions could
be fixed by strong selective sweeps, the higher genome-wide
dN between B-GSS and B-GWSS, but not B-BGSS and B-
GWSS, likely reflects and increased fixation rate of slightly
deleterious mutations (Moran 1996; Rispe and Moran 2000;
Kuo et al. 2009; Wernegreen 2015). All genes in each pairwise
comparison are under purifying selection (dN/dS < 0.3), indi-
cating that selection is operating to maintain gene function.
Thus, it is plausible that acceleration in substitution rates in B-
GSS has contributed to increased gene impairment and gene
losses.

Conclusion

Comparative studies of genomes within clades of obligate
symbionts are limited, and can elucidate the evolutionary pro-
cesses that give rise to extreme genome features. Such com-
parisons are of special interest among the hyperdiverse
leafhoppers that contain multiple coresident symbionts.
Previous studies demonstrated that interacting genomes
coevolve functional complementarity between symbionts
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and between symbionts and hosts (McCutcheon and Moran
2010, 2012; Bennett et al. 2014). Our results further illumi-
nate the potential mode of symbiont genome degradation by
demonstrating that. Buamannia genomes deteriorate in a
lineage-specific manner. Genomic differences are governed
by preceding gene losses and shifting rates of molecular
evolution that impact all categories of bacterial cell function
(e.g., mutation repair, cell wall synthesis, and nutritional syn-
thesis). Remarkably, B-GSS has even lost the EAA pathway for
methionine, which is also absent from the coresident Sulcia
genome: complete lack of methionine pathway was previ-
ously unknown for any auchenorrhynchan symbiotic system.
The loss of the ability to synthesize methionine in B-GSS is
potentially the extreme outcome of earlier gene losses in the
Cicadellini clade and may have impacted host ecology.
Although Baumannia is ancient, it is relatively young com-
pared with some other insect symbionts (e.g., Buchnera,
Carsonella, Sulcia, Nasuia, Zinderia, etc.). These analyses
offer a unique glimpse of how the genomes of established
symbionts initially diverge in gene content and then converge
upon a tiny genome streamlined for nutrient provisioning.

Materials and Methods

The yellow bacteriome was dissected out from fifteen indi-
vidual D. minerva adults obtained from greenhouse-reared
colonies at University of California at Berkeley. Genomic
DNA was extracted, purified, and sequenced using 454 GS
FLX following the manufacturer's protocol. A total of
230,307 reads were assembled with Newbler version
1.1.02.15 into 12,901 contigs of which 29 were of
Baumannia origin. Potential Baumannia contigs were initially

binned by GC content and then identified with BLAST. The
average contig size was 21,084 bp with an average coverage
of 8.7x. Gaps were closed with polymerase chain reaction
and Sanger sequencing. RAST and glimmer3 were used for
initial gene predictions, and gene identities were determined
with Hmmer3 (Aziz et al. 2008; Finn et al. 2011). A total of
68 predicted protein-coding genes were out-of-frame. Since
454 sequencing is known to introduce errors in homopoly-
mer lengths, frameshifts were manually adjusted to be in-
frame. Genes disrupted by larger indels were verified with
Sanger sequencing. Phylogenetic and molecular analyses
were performed in RAXML v7.4.4 and PhyML with custom
python scripts as described elsewhere (Yang and Nielsen
2000; Stamatakis 2006; Bennett et al. 2014). Statistical
analyses were conducted in JMP v.11.
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