Population genomics of a symbiont in the early stages of a pest invasion

AMANDA M. V. BROWN,* LYNN Y. HUYNH,† CAITLIN M. BOLENDER,* KELLY G. NELSON* and JOHN P. MCCUTCHEON*

*Division of Biological Sciences, University of Montana, 32 Campus Drive, HS104, Missoula, MT 59812, USA, †Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA

Abstract

Invasive species often depend on microbial symbionts, but few studies have examined the evolutionary dynamics of symbionts during the early stages of an invasion. The insect Megacopta cribraria and its bacterial nutritional symbiont Candidatus Ishikawaella capsulata invaded the southeastern US in 2009. While M. cribraria was initially discovered on wild kudzu plants, it was found as a pest on soybeans within 1 year of infestation. Because prior research suggests Ishikawaella confers the pest status—that is, the ability to thrive on soybeans—in some Megacopta species, we performed a genomic study on Ishikawaella from US. Megacopta cribraria populations to understand the role of the symbiont in driving host plant preferences. We included Ishikawaella samples collected in the first days of the invasion in 2009 and from 23 locations across the insect’s 2011 US range. The 0.75 Mb symbiont genome revealed only 47 fixed differences from the pest-conferring Ishikawaella in Japan, with only one amino acid change in a nutrition-provisioning gene. This similarity, along with a lack of fixed substitutions in the US symbiont population, indicates that Ishikawaella likely arrived in the US capable of being a soybean pest. Analyses of allele frequency changes between 2009 and 2011 uncover signatures of both positive and negative selection and suggest that symbionts on soybeans and kudzu experience differential selection for genes related to nutrient provisioning. Our data reveal the evolutionary trajectory of an important insect-bacteria symbiosis in the early stages of an invasion, highlighting the role microbial symbionts may play in the spread of invasive species.

Keywords: invasive species, Ishikawaella, Megacopta, population genomics, soybean pest, symbiont

Received 16 December 2012; revision received 6 March 2013; accepted 14 March 2013

Introduction

Microbial symbionts often accompany invading species (Desprez-Loustau et al. 2007; Janson et al. 2008; Lichman 2010; Feldhaaar 2011) and could, in theory, play a role in the biology of invasions. By providing a limiting resource, nutrient-provisioning symbionts are perhaps especially likely to exert this control on their hosts (Clay & Holah 1999). Understanding the role that symbionts play in the establishment and maintenance of species invasions could therefore be helpful in management decisions. Despite the potential importance of this phenomenon, few studies have addressed microbial symbiont evolution during the early stages of invasion (Shah et al. 2009; Feldhaaar 2011). Sap-feeding insects within the order Hemiptera have the potential to show this symbiont-driven evolution, as many of these insects have nutrient-poor diets, depend on obligate bacterial symbionts to synthesize amino acids or vitamins absent in their food, and display sometimes extreme ecological specialization (Buchner 1965; Baumann 2005; Dale & Moran 2006; McCutcheon & Moran 2010; MacDonald et al. 2011; Sachs et al. 2011; Vogel & Moran 2011).
However, as many symbionts in this group show strictly vertical transmission, undergo little or no recombination, and have extremely reduced genomes with no evidence of horizontal gene transfer (Mira et al. 2001; Andersson 2008; McCutcheon & Moran 2011), it is likely that they have a reduced capacity for adaptation compared with free-living bacteria. It is therefore unclear whether these symbionts could provide much dynamic genetic potential when placed in a new environment. Nevertheless, many Hemipterans are highly successful invasive pests (e.g. whiteflies, aphids, scale insects, psyllids and stinkbugs; www.issg.org; Pimentel et al. 2005), and the role of symbionts in these invasions is unknown.

Here, we study a recent invasive insect-bacteria symbiosis whose symbiont governs its success on different host plants (Hosokawa et al. 2007). *Candidatus Ishikawaella capsulata* (hereafter, *Ishikawaella*; Gammaproteobacteria) is a symbiont of stinkbugs in the genus *Megacopta* (Hemiptera: Plataspidae). *Ishikawaella* lives in specialized crypts in the insect’s midgut, synthesizing essential amino acids and vitamins missing in the phloem sap diet of the insect (Fukatsu & Hosokawa 2002; Hosokawa et al. 2005, 2006). These insects are legume (Fabaceae) specialists endemic to Asia and previously unknown in the New World (Eger et al. 2010). However, *Megacopta cribraria* was discovered in Hall Co., Georgia in October 2009 and has since spread rapidly to eight states in the southeastern US covering more than 400 000 km², following the range of its preferred wild host, kudzu (*Pueraria* spp.; Eger et al. 2010; Suiter et al. 2010; Zhang et al. 2012). Within 9 months of the initial US invasion, *M. cribraria* was found on soybeans (*Glycine max*) (Suiter et al. 2010) and is now a widespread US soybean crop pest. This was unexpected because the US insect genetically and morphologically resembles *M. cribraria* in Asia, which are considered to be ‘nonpests’ that rarely infest crop legumes (Hosokawa et al. 2005, 2007; Jenkins & Eaton 2011). In Japan, a closely related but genetically distinct insect (*Megacopta punctatissima*) is a frequent pest of soybeans, having significantly higher fitness on soybeans than the nonpest *M. cribraria* (Hosokawa et al. 2007). Remarkably, Hosokawa et al. (2007) showed that by exchanging the symbiont-containing transmission ‘capsules’ that females lay down with eggs, they could reverse the pest and nonpest phenotypes of the insects (Fig. 1A), effectively making the nonpest into a pest (Hosokawa et al. 2007). They concluded it is the genotype of the symbiont *Ishikawaella* rather than that of the host that determines the pest status.

Fig. 1 Experimental symbiont swap by Hosokawa et al. (2007) and alternate scenarios for emergence of the pest phenotype in the US invasion. (A) Results of experimental symbiont swap by Hosokawa et al. (2007) showing that nonpest and pest insects (*Megacopta cribraria* and *Megacopta punctatissima*, respectively) reversed their differential hatch rate on soybeans (represented by different soybean leaf size at bottom). While both *Megacopta* spp. thrive on kudzu (shown in green), only the pest thrives on soybeans (yellow). This demonstrated that the genotype of the symbiont *Ishikawaella* determines the insect phenotype. (B) Alternate scenarios for emergence of the pest phenotype on US soybeans (yellow) from a nonpest insect in Asia (green): horizontal acquisition of the symbiont from a pest insect (i.e. ‘symbiont swap’) before arrival in the US, mixing or hybridization amongst pest and nonpest insects and/or recombination in symbionts in Asia, or novel ‘pest’ mutations in the symbiont in the US (blue).
ont is of great practical interest, as infestation with this insect-bacteria symbiotic system significantly decreases growth of both plants. Soybeans are worth approximately $40 billion in the US, and kudzu is a significant invasive plant (Kikuchi & Kobayashi 2010; Zhang et al. 2012; www.ers.usda.gov/topics/crops/soybeans-oil-crops.aspx). For nutritional symbionts, it is easy to envision small genetic changes causing large effects. For example, substitutions or indels could occur in pathways essential to the symbiont’s nutrition-provisioning role. If plants differ in the availability of nutrients synthesized by the symbiont, these genetic changes could affect the insect’s success on different plants. Such changes could be deleterious, such as nonsense or frameshift mutations disrupting symbiont nutrient pathway genes, or they could be beneficial if they increase production of a limiting nutrient. The recent publication of the completed genome of Ishikawaella from the pest insect M. punctatissima (Nikoh et al. 2011) simplifies our search for genomic differences that may be associated with M. cribraria’s emergence on soybeans in the US.

We used population genomics to explore the evolutionary trajectory of Ishikawaella during the first 2 years of the US invasion. By deep sequencing the complete Ishikawaella genome from samples across the US—including a sample from the first days of infestation (hereafter referred to as ‘ground zero’) —the current study tests various scenarios for pest emergence during the invasion (Fig. 1B). We were particularly interested in determining the similarity of the US symbiont to the pest-conferring symbiont in Asia, as well as the magnitude and direction of genetic change that has taken place since the founding of the invasion. This is important as the insects display a mixed pattern of soybean infestation in the US, with some localities not as affected as others (Suiter et al. 2010; Jenkins & Eaton 2011), and colour and size variation in the insects, with at least one case apparently varying with host plant (see Fig. S1, Supporting information). Insect size and colour are indicative of symbiont genotype in Asia, the nonpest being smaller and paler in colour than the pest, and symbiont-free (aposymbiotic) insects being even more small and pale (Hosokawa et al. 2006, 2007). Do these variations in plant preference and insect morphology in the US correlate with symbiont genetic diversity?

Our results show that the symbiont genotype has not changed during its time in the US, including during the emergence on soybeans early in its invasion. We show this genotype strongly resembles the pest-conferring Ishikawaella genotype in M. punctatissima in Japan and hypothesize that the symbiosis arrived in the US capable of being a pest and has maintained this ability from 2009 to 2011. At the same time, our analyses identify genes of potential functional interest for the pest status in this system.

Methods

Sample collection

Megacopta cribraria were collected in the US (Table S1, Supporting information) from 15 July to 8 October 2011 from wild kudzu vine (Pueraria montana var. lobata), bush clover (Lespedeza cuneata) and cultivated soybeans (Glycine max) at locations across the insect’s range (Fig. 2). These insects were frozen at –20 or –80 °C. A specimen was also collected during the first week of observed infestation in the US in Hall Co., Georgia (or ‘ground zero’), on 3 November 2009 from Pueraria spp. and preserved in 95% EtOH. It should be clearly noted that our ground zero sample came from a single insect and that this insect was stored differently than the remaining samples. This was primarily due to necessity—very few insects from the first sightings were preserved using methods amenable to DNA work. It is therefore possible that our ground zero polymorphism frequencies are skewed in some way, but the available evidence is consistent with the outbreak beginning with a very small number of individuals (Eger et al. 2010; Jenkins & Eaton 2011), and we are not aware of any systematic bias that would result from storage in ethanol vs. freezing.

Sample preparation and quantitative PCR

Insects were dissected in sterile Petri plates in phosphate-buffered saline with Tween 20 (PBST). Forceps and dissecting scissors were scrubbed with detergent, rinsed with 50% bleach and wiped with ethanol between dissections. The symbiont-crypt bearing gut section was removed, washed in fresh PBST, placed in a 1.5 ml tube and ground with a micropestle in 20 µl proteinase K and 180 µl ATL buffer followed by overnight digestion and DNA isolation using DNeasy Blood and Tissue Kit (QIAGEN) following the manufacturer’s directions. DNA was quantitated for each sample in triplicate using the QuantiFluor dsDNA System (Promega) on a STRATAGENE MX3000p by a standard curve assay. To assess quality of dissections and optimize coverage of the symbiont in sequencing, quantitative PCR was performed using a STRATAGENE MX3000p with Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent) and Ishikawaella-specific groEL primers (Hosokawa et al. 2007) normalized using the insect elongation factor 1-alpha gene, with 95 °C 3 m, 40 cycles 95 °C 20 s, 60 °C 20 s and a final melt of 95 °C 30 s, 55 °C 30 s, 72 °C 1 m. One genomic library was
Genomic library creation and assembly

Genomic libraries were prepared based on protocols described in Son & Taylor (2011) and instructions supplied with the NEXTflex DNA Barcodes (Bioo Scientific, Austin, TX; see Data S1, Supporting information). Barcoded libraries were demultiplexed, quality filtered and assembled using standard protocols, described in detail in Data S1, Supporting information. The US *Ishikawaella* genome was represented at an average of 266× depth per insect (*N* = 108 insects) for a combined coverage of 1196× per sampling location (for details see Table S2, Supporting information). The *Ishikawaella* plasmid always assembled into a single fragment with negligible polymorphism. It was sequenced at, on average, approximately 3500× coverage per sampling location, corresponding to 3 copies per *Ishikawaella* genome. To rule out the possibility of other microbial symbionts.

© 2013 John Wiley & Sons Ltd
that may be contributing to the symbiosis in some way, we performed BLASTX searches against the GenBank non-redundant protein database with all assembled contigs not assigned to Ishikawaella and the insect mitochondria.

Mapping, SNP analysis and annotation

Consensus sequences from each de novo assembly were used as references for mapping and SNP/indel calling. GATK v.1.5-16 (McKenna et al. 2010; DePristo et al. 2011) was used for local realignment. The pipeline consisted of using paired-end mapping with bwa and SAMTOOLS (Li & Durbin 2009; Li et al. 2009), followed by local realignment using RealignerTargetCreator and IndelRealigner in GATK, then removing duplicate reads with PIRCARD v1.64 MarkDuplicates (http://picard.sourceforge.net) and finally calling SNPs and indels using GATK’s UnifiedGenotyper, which reports allele frequencies including SNPs and indels, with a minimum coverage cut-off for variant calls of 5 reads per variant allele. To check for indel mapping errors (e.g. especially near the ends of reads), bam files were viewed in TABLET 1.12.03.26 (Milne et al. 2010). Although sequencing results were high quality and several filtering steps were used, to address remaining sequencing or PCR error, only SNPs and indels of >1% frequency in at least one sampling location were included in subsequent analyses. Fixed SNPs were defined as having ≥99% of reads matching an allele, and high-frequency SNPs and indels as ≥95% or ≥85% matching, respectively. The latter value was set somewhat lower because of increased uncertainty of calls due to possible mapping error. Lower-frequency SNPs and indels in the US were compared in two ways (i) by classification into functional categories and testing for overrepresentation or underrepresentation of ‘hits’ (number of polymorphic sites) and (ii) by analysing allele frequency changes since ground zero, grouping by distance, plant or functional category. Gene prediction was performed using PRODIGAL v2-50 (Hyatt et al. 2010) and by comparison with the fully annotated reference genome of Ishikawaella (GenBank Accession AP010872.1, AP010873.1) by viewing these in Artemis (Carver et al. 2012). Allele frequency change was defined as the change in % of reads with an alternate nucleotide (a SNP) compared with the % of reads with that nucleotide in the ground zero sample. Positive and negative values represent SNPs with increased or decreased frequency since ground zero, respectively, potentially reflecting genetic drift, positive selection or negative (purifying) selection. For analysis of functional categories (clusters of orthologous groups, COG; or gene ontology, GO), differences in allele frequency change were added and then normalized for the total length of genes in a category and for the number of samples. Basic statistical tests (likelihood ratio test, Spearman’s rank correlation, Wilcoxon signed rank, etc.) were performed in Excel. Tests for multiple ‘hits’ to genes and GO categories were evaluated using permutation tests in GOWINDA v1.12 (Kofler & Schlötterer 2012) which controls for gene length differences, overlapping genes and performs multiple testing (false discovery rate, FDR) correction. Gowinda was run in snp mode with 100000 simulations using 10000 random SNPs to generate the null distribution, tested against GO categories downloaded from GOMINER v291 (Zeeberg et al. 2003). These methods act as an alternative to other neutrality tests that are not easily applied to short read data with low-level polymorphism within samples, for which haplotypes would be necessary. Partial genes (short ORFs) predicted in Prodigal and BLAST were examined in Tablet and Artemis for possible pseudogene differences compared with the reference genome for every GATK-predicted indel and SNP. Additive allele frequency changes, gene names and COG categories were displayed graphically using Circos (Krzywinski et al. 2009). Population genetics parameter estimation was performed as described in Data S1, Supporting information.

Results

Few functional differences between US and Japanese Ishikawaella strains

The US Ishikawaella genomes from all invasive M. cribraria were identical in gene order and orientation to the published Japanese Ishikawaella genome from the soybean pest insect M. punctatissima (Nikoh et al. 2011). The consensus US Ishikawaella genome was 46 bp longer than the Japanese reference genome due to six short indel differences. The US and Japanese Ishikawaella genomes differed by just 37 fixed and 10 high-frequency polymorphisms, including six indels and 41 substitutions. About half of these were in coding regions (14 nonsynonymous and 10 synonymous), and the remaining were in intergenic regions or pseudogenes (see Table S3, Supporting information). The 14 nonsynonymous differences affect genes that fall into three broad COG categories: six in cellular processes (O, M, P), four in information storage (J, K, L) and three in metabolism (C, H). Only two substitutions occurred in genes with putative symbiont nutritional roles (COG category H, coenzyme transport and metabolism): cysG (fused siroheme synthase 1,3-dimethyluroporphyrinogen) and ribC (riboflavin synthase subunit alpha). The cysG substitution was a synonymous C to A change at position 152423. The ribC substitution was a nonsynonymous T to G change at position 508418.
producing a radical lysine to asparagine amino acid replacement. This substitution is in the lumazine-binding domain of the protein (by homology with \textit{E. coli}, Liao \textit{et al.} 2001) and so could affect the function of the enzyme. Careful examination of all intragenic SNP and indel regions (using \textit{BLAST} searches) revealed no differential pseudogenization between the US and published Japanese pest genome. Plasmid sequences matched that of the published 9140 bp \textit{Ishikawaella} plasmid from \textit{M. punctatissima} (GenBank accession AP010873.1), except for a single nucleotide difference (A to T at position 2456, a synonymous change in methionine aminopeptidase).

Many polymorphisms, but no fixed differences across the US

No fixed allele differences were observed amongst US \textit{Ishikawaella} samples. There were 164 low-frequency polymorphic sites with up to 27.5\% allele frequency (i.e. percent of reads with alternate allele compared with reference allele from published Japanese \textit{Ishikawaella}; Table S4, Supporting information). All US sampling locations showed some polymorphism (2–83 polymorphic alleles). All sites were di-allelic (having only two alternate nucleotides). Of the 164 polymorphic sites, 95 occurred in only one sample and 69 were shared between two or more sampling locations. Forty-nine sites were polymorphic in the ground zero sample, and another 115 sites displayed new polymorphisms not present at ground zero. Ten were nonsense (stop) mutations (1.3–3.8\% frequency), and five were frameshifts caused by 1 bp deletions (2.2–3.6\% frequency). Amongst new polymorphic alleles, the ratio of nonsynonymous to synonymous sites was 65/20 (3.25:1).

Polymorphic sites are unevenly distributed amongst COG categories and genes

Most polymorphic alleles occurred in coding rather than intergenic regions (134 vs. 30), but most of the \textit{Ishikawaella} genome is coding, such that allele distribution measured as alleles per nucleotide showed an even distribution between coding and intergenic regions. It was difficult to classify intergenic polymorphic sites because regulatory regions are poorly characterized in obligate nutritional symbionts. However, amongst alleles within coding regions, the distribution of SNPs was uneven between different COG categories after normalizing for the length of each category in base pairs (two-tailed likelihood ratio test for goodness-of-fit to null model of even distribution across COGs \textit{P}-value = 0.0049, 16 d.f.). Lipid transport and metabolism (I), cell wall, membrane, envelope biogenesis (M) and signal transduction mechanisms (T) appear overrepresented, whereas replication, recombination and repair (L), carbohydrate transport and metabolism (G) and nucleotide transport and metabolism (F) appear underrepresented (Fig. S2, Supporting information). Despite the presence of 28 polymorphic sites in COG categories for amino acid and coenzyme metabolism (E and H), which are potential symbiont nutritional role-related genes, these categories displayed average numbers of polymorphic sites after controlling for the length of each COG.

The distribution of allele frequency change since ground zero was also uneven between different COG categories (Fig. 3). Negative allele frequency change was most dramatic for lipid transport and metabolism (I), cell cycle control, cell division and chromosome partitioning (D), intergenic regions (X) and amino acid metabolism (E). However, negative allele frequency change was not significantly different for the two plants (kudzu vs. soybeans two-tailed Wilcoxon signed rank test \textit{W} _{crit} 0.05,9 = 35 \geq W = 27, P-value = 0.652; Fig. 3). In contrast, positive allele frequency change was greatest for replication, recombination and repair (L), cell wall/membrane/envelope biogenesis (M), lipid transport and metabolism (I) and coenzyme transport and metabolism (H) (Fig. 3). In contrast to the negative allele frequency changes, positive allele frequency change was significantly different on kudzu vs. soybeans (two-tailed Wilcoxon signed rank test, \textit{z} _{crit} = −2.47, \textit{W} = −105, P-value = 0.0135).

Genes with two or more polymorphic sites (hereafter ‘multiple hits’) occurred with high frequency: 43\% of polymorphisms (70 of 164 sites), representing 30 of all 84 genes with polymorphic sites. Of these 30 genes with multiple hits, 23 were new mutations not observed in the ground zero sample. Eight genes had more than two hits: \textit{thrA}, \textit{sdhB}, \textit{accC}, \textit{valS}, \textit{clpB} each had 3; \textit{sucD} had four; and \textit{mreB} and \textit{ribD} each had five. Many multiple hits occurred close together (57\% were within 10 bp; median nc distance within genes 3.5 bp apart, mean = 184 bp; Table S5, Supporting information). Permutation tests in Gowinda supported overrepresentation in genes \textit{ribD} and \textit{mreB} (P-value = 0.00077), \textit{sucD} (P-value = 0.0068) and \textit{accC} (P-value = 0.01; Table S6, Supporting information) and several other enzymatic/protein complexes, processes or pathways including riboflavin biosynthesis (P-value = 0.0092; Table S7, Supporting information). Most essential amino acid biosynthesis pathways had multiple hits (e.g. Arg, Thr, Met, Ile, Val, Leu, Lys, Phe, Trp had 2, 3, 3, 2, 2, 4, 3, 2, 5 hits, respectively), but overrepresentation was not significant for these (Table S8, Supporting information).
Allele frequency change varies with distance, host plant and COG category

Localities differed in overall (absolute) allele frequency change since ground zero and in the relative levels of nonsynonymous and synonymous change (see pie graphs Fig. 2), although the overall trend with respect to distance was complex (see Fig. S3, Supporting information), and a detailed analysis will depend on further sampling. On the whole, our results reflect an overall trend of increased allele frequency change in samples near the boundary of the 2010–2011 ranges. For example, excess of polymorphism (Tajima’s D) vs. distance, as a measure of deviation from neutrality, was always negative (from −2.6 to −4.4) with greatest variance in samples in mid-distances (Fig. S3, Supporting information). Negative values of Tajima’s D are consistent with an expanding population or purifying selection.

The correlation of positive allele frequency change with distance also depended on plant: soybeans showed a more significant correlation with distance than did kudzu (one-way ANCOVA P-value 2.5E-17; both plants negatively correlated with distance: soybeans $\rho = -0.413$, P-value $= 2.7E-7$, 142 d.f.; kudzu $\rho = -0.185$, P-value $= 0.028$, 140 d.f.). These results reflect the pattern shown in Fig. 2, depicting three localities with the greatest allele frequency change also having the largest ratio of nonsynonymous to synonymous mutations, two of these being on soybeans. These patterns are consistent with what would be expected from positive selection or relaxed purifying selection.

Amino acid and cofactor biosynthesis genes (COG categories E and H) showed significantly higher allele frequency change for nonsynonymous sites on soybeans compared with kudzu (soybean = 45.3%, kudzu = 7.2%, one-tailed, two-sample unequal variance t-test P-value $= 0.016$). The net change for these COG categories was opposite: allele frequencies in genes
related to amino acid pathway alleles decreased, whereas coenzyme pathway alleles increased in frequency.

Alleles showing the greatest frequency change: frameshifts and recB

Polymorphic alleles were dispersed widely across the genome and occurred in diverse functional categories (Fig. 4). The majority of alleles (75%) showed low-frequency net positive change (Fig. 4 and see Table S9, Supporting information) including eight nonsense (stop) mutations. Adding change across all samples, only 10 alleles had >10% positive frequency change, whereas 41 alleles had >10% negative frequency change. The greatest negative allele changes include all five frameshifts and one nonsense mutation; these results are consistent with purifying selection acting on deleterious mutations. Three of the frameshift alleles present as ground zero polymorphisms were not observed in any other samples. Several of the most negative and most positive alleles were in intergenic regions (Fig. 4 and Table S9, Supporting information). Three intergenic alleles with large frequency change (two negative and one positive) were approximately 70–80 bp upstream of the 16S gene (positions 318557–318573), and the two others with large negative change were approximately 90–110 bp upstream of genes ackA and dnaK (positions 56145 and 357520).

The most positively changed allele was a nonsynonymous A to C SNP at position 166518 in recB. RecB, or Exonuclease V beta chain is part of the RecBCD complex involved in recombination and repair. The SNP we observed causes a conservative leucine to valine substitution at the near conserved α-helix (motif VI) were shown to inhibit RecBCD helicase activity (see Dillingham & Kowalczykowski 2008; and references therein). Thus, it remains unclear whether this SNP could affect the enzyme function. Because RecBCD is involved in recombination and repair (Yu et al. 1998), we looked for a positive correlation between the number of new SNPs in a sample and the allele frequency of this recB SNP. The recB allele frequency was strongly positively correlated with new SNPs for soybeans, but not kudzu (Spearman's rank correlation: soybeans $\rho = 0.748$, P-value = 0.021, 7 d.f.; kudzu $\rho = 0.088$, P-value = 0.79, 10 d.f.; see Fig. S4, Supporting information). When considering all plants together, the frequency of the recB allele showed an increase with the number of new SNPs per sample and, to a lesser extent, with distance from ground zero (slope of linear regression 0.179 and 0.0184, respectively), whereas new SNPs did not increase as much with distance (slope of linear regression 0.00744). However, these correlations were not significant (linear regression for recB vs. SNPs $r^2 = 0.128$ P-value = 0.094, recB vs. distance $r^2 = 0.0821$ P-value = 0.19, and SNPs vs. distance $r^2 = 0.00333$ P-value = 0.79, all d.f. = 21). Principal component analysis supported this result (recB vs. SNPs and recB vs. distance: PC1 + PC2 = 0.81 of variance; SNPs vs. distance: PC3 = 0.19).

Several ribD (riboflavin deaminase reductase) mutations were high in positive allele frequency change. The highest of these occurred in five samples, showing >16% change added across samples. A non-synonymous A to T mutation at position 290108 causes a radical leucine to phenylalanine substitution within a predicted conserved catalytic motif (Zn-binding site) and proton-donor site of the gene (by homology with RibD residues 51–57 in E. coli, Stenmark et al. 2007). Samples from soybeans showed more positive change in this allele. The remaining 3 ribD mutations were also in the Zn-binding domain, and four of seven samples with these alleles were from soybeans.

Discussion

Based on the observations that the genotype of the bacterial symbiont *Ishikawaella* determines the pest status of its host insect in Japan (Hosokawa et al. 2007) and that US host insects resemble nonpest insects in Asia (Eger et al. 2010; Jenkins & Eaton 2011), we searched for genetic changes that may be associated with emergence of the pest phenotype (i.e. the emergence on soybeans) in the recent US *M. cribraria* invasion. For *Ishikawaella* from ground zero and 23 other US locations on three plant species, we used deep sequencing and comparative genomics to test hypotheses on the symbiont's role in pest emergence (Fig. 1B). We also looked at changes in polymorphic allele frequency, expecting that in the absence of selection, new alleles, and changes in pre-existing alleles should be randomly distributed with respect to specific genes or COG categories, whereas alleles under selection may be clustered in the genome and change nonrandomly. If selection occurs, it may act between symbionts within a host or between symbiont populations within different host individuals, the latter potentially revealing genes that play a role in differential host survival. Below, we discuss our results in light of these predictions.
Fig. 4 Polymorphic allele frequency change since ground zero in US *Ishikawaella capsulata* mapped onto the genome, showing changes at individual loci in general functional categories. Histograms directed outward and inward represent positive and negative frequency change, respectively. Each stacked histogram box represents the allele frequency change compared with ground zero in a single sample location in the US. Histogram colours and coloured gene names represent different functional categories (see legend inset box and full clusters of orthologous groups category names in Fig. 3 legend). Gene names in black represent fixed substitutions or indels differing between the US consensus and published Japanese pest *Ishikawaella* (for simplicity of figure, fixed intergenic differences are not shown). Grey, white and black bars in the inner ring show for the remainder of the genome the coding, intergenic and rRNA/repeat regions, respectively. Asterisks indicate frameshift mutations. Thin grey concentric circles indicate histogram units in% allele frequency change compared with ground zero in steps of 10% for inward and 20% for outward histograms. Positions in the genome (0–745,636) are indicated in grey numerals with tick marks just outside inner ring.

© 2013 John Wiley & Sons Ltd
US insects harbour a strain of Ishikawaella that strongly resembles the Japanese pest-conferring symbiont

Our analyses demonstrated that overall nucleotide similarity and the predicted functional profile of the US symbiont Ishikawaella closely resembles the published pest-conferring Ishikawaella. We therefore hypothesize that the US Ishikawaella is functionally similar in its symbiont role to the Japanese pest version of Ishikawaella, with the exception of a single difference in the riboflavin synthase (ribC) gene. The significance of this single amino acid substitution in ribC is unclear. If it affects the efficiency of riboflavin biosynthesis, this might be important if riboflavin availability differs across legume species. While amino acid content in phloem can affect performance in the aphid-Buchnera symbiosis (Sandström & Pettersson 1994), to our knowledge, no studies examine content of riboflavin or vitamin/cofactors in phloem across legume species and their affect on a phloem feeder. It is not clear whether riboflavin could be limiting in this system. Nevertheless, this substitution is not polymorphic in the US, so presumably this change does not account for differences in plant use across US sampling locations or in the emergence of the pest phenotype in the first year after arrival.

To fully evaluate how US Ishikawaella confers the pest status, future symbiont swap experiments and genome sequencing should include other isolates from Asia for which the plant host range and pest status have been demonstrated experimentally. At present, these are not available. However, the genome from an Ishikawaella isolate from a Megacopta specimen from Fukuoka, Japan (AMVB data unpublished), is similar to that reported here from the US, with no further pseudogenization. The plant host range and pest status of this Fukuoka specimen could not be reliably established, although its location would suggest it may also be able to act as a soybean pest (Hosokawa et al. 2007; and references therein). We speculate, based on a molecular clock for Buchnera (see Moran et al. 2009; based on 19 substitutions per 270 years), that these three Ishikawaella genotypes may have diverged approximately 700 years ago, during a time of expansion of Asian soybean cultivation (Hymowitz & Kaizuma 1981). Taken together, our results complement recent experimental host plant range data (see Zhang et al. 2012) by providing a baseline genomic signature for the soybean-utilizing Ishikawaella.

How did the pest Ishikawaella originate?

While conclusive support for the Asian origins of the US Megacopta-Ishikawaella invasion will depend on more extensive sampling in Asia, the present finding that the US symbiont genome functionally resembles the pest-conferring symbiont from M. punctatisima in Japan, while the US insect resembles the Asian ‘non-pest’ M. cribraria (Eger et al. 2010; Jenkins & Eaton 2011) implicates some unusual event prior to or during the nascent invasion. Three possible nonexclusive scenarios are illustrated in Fig. 1B: (i) a symbiont swap, (ii) hybridization or (iii) novel mutations. The first scenario, a symbiont swap, may be likely here due to the extra-cellular condition in Ishikawaella, whereas it would be improbable in primary endosymbionts that are transmitted transovarially (Moran et al. 2008). Phylogenetic analyses for stinkbug symbionts show that symbiont swaps have been rare (Kikuchi et al. 2009). Nevertheless, the ease with which a swap was achieved in laboratory (Hosokawa et al. 2007) suggests it is possible. In nature, a swap may occur anywhere pest- and nonpest Megacopta species co-occur. Normally, newly hatched nymphs use their piercing and sucking mouthparts to probe for symbiont-containing capsules laid down with the eggs by their mothers (Fukatsu & Hosokawa 2002). However, if nymphs are disturbed or capsules are damaged or not found, nymphs rapidly disperse great distances (several metres) in search of other capsules (Hosokawa et al. 2008). Thus, if leaves bearing capsules from a different Megacopta species were found nearby, nymphs could easily encounter these and become inoculated with a different symbiont.

In considering the other scenarios spelled out in Fig. 1B, our data cannot rule out a hybridization event between the pest and nonpest Megacopta species or recombination between Ishikawaella strains. Hosokawa et al. (2007) report that F1 hybrid insects from M. cribraria × M. punctatisima are fertile and produce viable F2 offspring. Furthermore, Nikoh et al. (2011) show that Ishikawaella possess intact genes for recombination, which has been recently highlighted as an important and underestimated force in bacterial symbionts (Sachs et al. 2011 and references therein). If insects are sympatric in some localities, nonpests could hybridize with pests, or nymphs could probe multiple symbiont capsules becoming inoculated with both nonpest and pest Ishikawaella strains, which could then undergo recombination, perhaps by transformation.

An alternate explanation for pest emergence is novel ‘pest’ mutations in US Ishikawaella (Fig. 1B). This possibility would have important consequences for pest control in major soybean-growing regions (e.g. Argentina and Brazil) not yet infested with Megacopta. If novel pest mutations were shown to arise from nonpest Ishikawaella in the US, we might expect them to be able to evolve elsewhere; hence, controlling nonpest Megacopta spp. would be important. The pattern of
mutation we observed did not support this. Given the lack of fixed differences amongst US isolates (discussed below), it appears that the arriving *Ishikawaella* may already have the pest-conferring ability based on the functional similarity to the *Ishikawaella* that confers the pest status in Japan, as discussed earlier. The only substitution between the pest-conferring *Ishikawaella* from *M. punctatissima* in Japan and the US *Ishikawaella* with a potential role in nutrient provisioning was a single *ribC* amino acid substitution that was already present at ground zero. Its presence in the arriving insect-*Ishikawaella* population does not support an origin of new pest mutations after arrival, although it is possible that it is related to the success of this pest. It is noteworthy that other independent mutations appear to have occurred after arrival within the same symbiont nutritional pathway (i.e. riboflavin biosynthesis), suggesting selection may be occurring on this trait. Further sampling in the US is needed to confirm or refute this hypothesis.

Genetic uniformity in US symbionts contrasts with plant use and morphological plasticity in insects

No fixed differences accumulated in the *Ishikawaella* isolates sampled from November 2009 at ground zero through October 2011 on soybeans, kudzu and Lespedeza spp, over an area of 120 000 km². The most important implication of this result is that it suggests the emergence on soybeans during the first year in the US was not due to a change in the symbiont, but was, perhaps, due simply to a lag between arrival and the colonization of soybeans by the pest-capable *M. cribraria*. Another implication of the lack of fixed differences in *Ishikawaella* is that in the US, the observed variation in host-plant distribution, colour, size of insects and appearance of the symbiotic-crypt bearing midgut (Fig S1, Supporting information) are not related to symbiont genotype, but rather to either phenotypic plasticity or genetic variation in the insect. Results showing mitochondrial marker uniformity in *M. cribraria* across the US (2336 bp of mitochondrial DNA from 83 individuals from 36 counties) suggest the insects came from a single maternal lineage and may therefore have limited genetic diversity (Jenkins & Eaton 2011). The present data also produced *M. cribraria* mitochondrial data showing low polymorphism, no fixed differences (data not shown) and no obvious association between polymorphic alleles and phenotype (Table S1, Supporting information). Nevertheless, differences in nuclear genotype of the insect could still play a role. Indeed, while the present US *Megacopta-Ishikawaella* invaders are prolific soybean pests that only reproduce successfully on kudzu and soybeans (Zhang et al. 2012), there appears to be a range of success on different legume hosts in Asia (see Eger et al. 2010, and references therein). It is not clear to what extent the symbiont is responsible. More extensive genetic sampling of Asian variants and host-range experiments may help address the question of the phenotype-genotype relationships for both symbionts and insects in the Asian population. Experimental swaps of symbiont-containing capsules in the US *M. cribraria* with capsules from nonpests in Asia should demonstrate more definitively whether this *M. cribraria* strain is truly a functional ‘non-pest’ in the absence of its pest-conferring symbiont. This could confirm causality of the pest phenotype for the pest-like *Ishikawaella* genotype in the US.

While these data emphasize the potential role of the symbiont, there are other nonadaptive processes that may be involved. The most likely of these may be enemy release and host plant (phloem) nutritional profile differences either across the US or compared with Asian host plants. Indeed, enemy release (e.g. improved fitness in new habitat due to absence of parasites, predators, etc.) is a possibility here. In Asia, *Megacopta* species have evolved with numerous natural enemies not present in the US (Eger et al. 2010). Differential success in the US may also be affected by different nutrient profiles in the various US kudzu strains (Pappert et al. 2000) and soybean varieties. Alternatively, insect phenotypic plasticity may play a role. This could involve the symbiont, as suggested by MacDonald et al. (2011) who showed the nutritional phenotype of the pea aphid may be governed by the interaction of host metabolism and transporter genes that regulate nutrient supply to the *Buchnera* primary symbiont. Finally, we must consider whether a secondary symbiont could be involved. We found no evidence for a second primary nutritional symbiont in our sequence data from the gut, confirming the results of Hosokawa et al. (2007). The only other microbe present in our data was *Wolbachia* at very low sequence coverage (data not shown). Our data suggest that the *Wolbachia* present in US *Megacopta* are phylogenetically similar to strains in Supergroup A (Kikuchi & Fukatsu 2003), many of which cause cytoplasmic incompatibility. However, recent evidence suggests some members of this clade may be mutualists, affecting insect success on different plants (see Feldhaar 2011 and references therein). Further study of the *Wolbachia* found in US *Megacopta* will be presented elsewhere.

Deep sequencing reveals polymorphisms that may be under selection

While our data could only examine the early phase of this symbiotic invasion, our deep sequencing coverage
of *Ishikawaella* isolates was able to resolve small differences in low-frequency alleles. This strategy has been effective in finding rare HIV variants and somatic cancer cells (De Grassi et al. 2010) and should be quite important in studying invasions (Barrett & Schluter 2008). Here, we found patterns consistent with possible purifying and positive selection, but teasing apart the effects of drift and selection on these allele frequency changes is difficult with our current data. For example, some alleles that increased in frequency occurred as clusters of SNPs within genes or pathways. While our results are preliminary, we suggest some of these genes or pathways could be under positive selection, most notably genes involved in riboflavin biosynthesis (*ribC* and *ribD* with five polymorphic sites in the US, and one fixed difference between the Japanese and US genomes) and the *mreBCD* alleles (eight polymorphic sites, two fixed differences) involved in cell shape. The *ribD* allele frequencies showed significantly different change on kudzu vs. soybeans, suggesting possible differential importance of riboflavin (vitamin B2) biosynthesis by *Ishikawaella* on these plants. While these early data are not yet corroborated by experimental studies, we suggest *ribD*—and by extension the entire riboflavin pathway—may be worth examining in the future as a candidate gene or pathway involved in success on soybeans in the US.

The *recB* allele, an A to C SNP at position 166518, displayed the greatest positive frequency change. Interestingly, we found a positive relationship between the *recB* allele frequency and the number new SNPs (most of which would presumably be deleterious). If this relationship was causative, we might expect the *recB* allele would be selectively disadvantageous and subject to purifying selection. However, studies show that moderately deleterious alleles may rise to high frequency due to demographically driven drift (‘surfing’) at the wave front of an expanding population (Travis et al. 2007; Excoffier & Ray 2008; François et al. 2010). This raises the question of whether the *recB* allele could be increasing in frequency even though it may be deleterious. Further study would be needed to address this possibility.

Conclusions

Previous studies have raised the question of when and how microbial symbionts might control their host’s phenotype (Tsuchida et al. 2004; Gerardo & Wilson 2011; Simms & Porter 2012). We suggest this question is especially important for invasive species (Lee 2002) and likely for symbionts of Hemipteran insects. We examined a system that has become a serious recent invasive pest in the US (Zhang et al. 2012) and where the genotype of the symbiont may cause a pest phenotype in its host, as has been shown experimentally for related strains in Japan (Hosokawa et al. 2007). We were primarily interested in determining the role of the symbiont in causing the emergence of the pest phenotype in the US. We found strong evidence that the genotype of US *Ishikawaella* in *M. cribraria* functionally resembles the *Ishikawaella* strain that confers the pest status in Japan, in *M. punctatisima*. Thus, we suggest the initial population of invading insects was probably able to infest soybeans, a surprising result given the resemblance of the host insect to nonpests in Asia. We hypothesize that some combination of symbiont swap or previous insect hybridization may have occurred prior to the invasion potentially facilitating the US outbreak. We also discuss several other nonadaptive factors, such as enemy release, that may play a role. Furthermore, our results clearly show that the observed differences in phenotype and morphology across the US cannot be due to *Ishikawaella* genotype differences. These findings point to future experiments with the US insect that should help determine causality of symbiont facilitation in this system (e.g. use of Asian specimens for symbiont swaps and host plant range tests). The current results provide a genomic baseline for comparative functional genomics to accompany such experiments. Finally, our analyses of SNP frequency changes and distribution suggest potential pathways of interest, such as riboflavin biosynthesis, that may be important for this insect to thrive on soybeans.

Acknowledgements

We thank N. M. Gerardo, T. M. Jenkins, D. R. Suiter, J. K. Greene and M. L. Allen for providing insects and helping with collection. We thank J. T. Van Leuven for the use of Perl scripts. We thank N. M. Gerardo, T. Spribile, D. Vanderpool, the editor (J. Russell), and three anonymous reviewers for suggestions which improved the manuscript. This work was funded by a USDA AFRI grant (2011-67013-30090) to J.P.M.

References

© 2013 John Wiley & Sons Ltd

Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36, 533–543.

© 2013 John Wiley & Sons Ltd

A.M.V.B. and J.P.M. designed the research and wrote the paper, L.Y.H. and A.M.V.B. collected specimens and did field research, K.G.N. performed dissections and qPCR, C.M.B. designed primers and conducted PCR, A.M.V.B. performed the research and analyzed the data.

Data accessibility

Sample information: Table S1. Indexed US *Ishikawaella* reads (.fastq files) and final genome sequence assembly with mapped reads (.bam files): Sequence Read Archive database (NCBI) accession numbers SRR784403, SRR784402, SRR745157, SRR710525. Raw SNP data: Dryad doi:10.5061/dryad.266 h9.

Supporting information

Additional supporting information may be found in the online version of this article.

Data S1 Detailed methods describing genomic library preparation, demultiplexing, filtering, assembly and population genetic parameter estimation.

Table S1 Details on *Megacopta* sample collection including host plant, date, location and insect colour.

Table S2 Illumina read data for barcoded samples, showing numbers of raw and filtered reads, percent of reads mapped to *Ishikawaella* and coverage for each barcoded index.

Table S3 Fixed substitutions and indels (and high frequency polymorphisms) between US *Ishikawaella* and the Japanese pest-conferring *Ishikawaella* from *Megacopta punctatissima*.

Table S4 Polymorphic alleles in US *Ishikawaella* with position, gene names, clusters of orthologous groups categories (or ‘x’ for intergenic) and allele frequency.

Table S5 Polymorphic alleles in US *Ishikawaella* that occur as ‘multiple hits’ (two or more per gene) along with distance in base pairs between neighbouring SNPs/indels.

Table S6 Statistical tests for overrepresentation of genes for polymorphic alleles in US *Ishikawaella*, calculated using GOWINDA v1.12 permutation tests.

Table S7 Statistical tests for overrepresentation of gene ontology (GO) categories for polymorphic alleles in US *Ishikawaella* calculated using GOWINDA.
Table S8 Statistical tests for overrepresentation of pathways for polymorphic alleles in US Ishikawaella calculated using GOWINDA.

Table S9 Polymorphic allele frequency change relative to ground zero in US Ishikawaella for each sample location and summed across locations.

Fig. S1 Megacopta cribraria morphological variation (external body and gut) amongst US samples and several Asian specimens.

Fig. S2 Histogram showing number of polymorphic SNPs/indels in US Ishikawaella per clusters of orthologous groups (COG) category (normalized for length of COG in genome).

Fig. S3 Further details on polymorphic allele frequency change correlation with distance and Pie and Tajima’s D results.

Fig. S4 Scatter plots showing the relationship between the recB allele frequency change, number of new SNPs and distance from ground zero for all sample locations with and without separation by host plant.