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Abstract

The main genomic changes in the evolution of host-restricted microbial symbionts are ongoing inactivation and loss of genes
combined with rapid sequence evolution and extreme structural stability; these changes reflect high levels of genetic drift
due to small population sizes and strict clonality. This genomic erosion includes irreversible loss of genes in many functional
categories and can include genes that underlie the nutritional contributions to hosts that are the basis of the symbiotic
association. Candidatus Sulcia muelleri is an ancient symbiont of sap-feeding insects and is typically coresident with another
bacterial symbiont that varies among host subclades. Previously sequenced Sulcia genomes retain pathways for the same
eight essential amino acids, whereas coresident symbionts synthesize the remaining two. Here, we describe a dual symbiotic
system consisting of Sulcia and a novel species of Betaproteobacteria, Candidatus Zinderia insecticola, both living in the
spittlebug Clastoptera arizonana. This Sulcia has completely lost the pathway for the biosynthesis of tryptophan and,
therefore, retains the ability to make only 7 of the 10 essential amino acids. Zinderia has a tiny genome (208 kb) and the
most extreme nucleotide base composition (13.5% G + C) reported to date, yet retains the ability to make the remaining
three essential amino acids, perfectly complementing capabilities of the coresident Sulcia. Combined with the results from
related symbiotic systems with complete genomes, these data demonstrate the critical role that bacterial symbionts play in
the host insect’s biology and reveal one outcome following the loss of a critical metabolic activity through genome reduction.

Key words: genome reduction, minimal genome, genome sequencing, Bacteroidetes, nutritional symbioses.

(Andersson and Andersson 1999a; Nilsson et al. 2005;
Moran et al. 2009). Genes from nearly every cellular process
are lost in the genomes of obligate intracellular symbionts,
including genes involved in DNA recombination, repair, and
uptake (Dale et al. 2003; Silva et al. 2003). The loss of re-
combinogenic activities results in genomes that are unusu-
ally stable, and several examples of symbiont genome pairs
diverged by 20-200 My show complete colinearity among
shared genes (Tamas et al. 2002; et al. 2005; McCutcheon

Introduction

Bacteria that have developed obligate symbioses with mul-
ticellular hosts often have smaller genomes than those of
their free-living relatives (Andersson and Kurland 1998;
Andersson and Andersson 1999b; Moran 2002; Moran
and Plague 2004; Moran et al. 2008; Moya et al. 2008).
Genome reduction is thought to be the result of a combina-
tion of factors, including small population sizes, frequent
population bottlenecks (due to their strict cytoplasmic inher-

itance), asexuality that limits the efficacy of selection (Moran
1996; Andersson and Kurland 1998), an unusually stable
and metabolically rich growth environment, and the general
bacterial mutational bias favoring deletions over insertions

et al. 2009a), a level of genome stability that is unique in
bacteria. It appears that once a bacterial lineage becomes
obligately associated with a host cytoplasm and its genome
shrinks beyond a certain size threshold (around 1-Mb pairs),
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the only remaining gross structural change observed is fur-
ther genomic degradation (Tamas et al. 2002; van Ham et al.
2003; Degnan et al. 2005; McCutcheon et al. 2009a).

Insects that have nutritionally unbalanced food sources
often have acquired intracellular symbiotic microorganisms
to supplement their diet (Buchner 1965; Douglas 1989). For
example, insects that feed exclusively on plant sap—which
can have high levels of carbohydrates but extremely low lev-
els of essential amino acids—possess stably associated
(coevolving) endocellular bacteria that provision the host in-
sect with essential amino acids and/or vitamin cofactors
(Shigenobu et al. 2000; Baumann 2005; Nakabachi et al.
2006; Wu et al. 2006; McCutcheon and Moran 2007;
McCutcheon et al. 2009a, 2009b). Insects in the suborder
Auchenorrhyncha, which includes sharpshooters (leafhop-
pers), cicadas, planthoppers, and spittlebugs (froghoppers),
have formed particularly elaborate symbioses with diverse
groups of microorganisms (Buchner 1965; Moran 2007).
These insects typically have multiple—often 2, but some-
times up to 6—diverse nutritional symbionts living in
specialized tissues called bacteriomes (Buchner 1965). The
most ancient and widely distributed is the Bacteroidetes
Candidatus Sulcia muelleri (hereby referred to as Sulcia
for simplicity) (Moran et al. 2005). Complete genomes for
Sulcia and its coresident symbiont have been sequenced
from three insect species: the glassy-winged sharpshooter
Homalodisca vitripennis (Sulcia-GWSS) (McCutcheon and
Moran 2007), the green sharpshooter Draeculacephala
minerva (Sulcia-DMIN) (Woyke et al. 2010) and the cicada
Diceroprocta semicincta (Sulcia-DSEM) (McCutcheon et al.
2009b). (The Sulcia-GWSS and Sulcia-DMIN genomes are
functionally identical from a nutritional perspective and
so only Sulcia-GWSS will be discussed further.) Although
Sulcia-GWSS diverged from Sulcia-DSEM at least 200 Ma
based on host fossils (Shcherbakov and Popov 2002), the
genomes are completely collinear and almost identical in
gene content; importantly, they both retain identical and
near-complete gene sets for the production of 8 of the
10 amino acids (leucine, isoleucine, valine, threonine, lysine,
arginine, phenylalanine, and tryptophan) (McCutcheon
et al. 2009a). In both the GWSS and DSEM systems, the re-
maining 2 essential amino acids (methionine and histidine)
are made by Sulcia’s cosymbiont, which in GWSS is the
Gammaproteobacteria Candidatus Baumannia cicadellini-
cola and in DSEM is the Alphaproteobacteria Candidatus
Hodgkinia cicadicola (hereby referred to as Hodgknia for
simplicity) (Wu et al. 2006; McCutcheon et al. 2009a).

In all studied cases for bacteriome-associated symbionts
in sap-feeding insects, the relationship is mutually obligate:
the host and its symbionts are completely dependent
on each other to survive (Douglas 1989; Nakabachi and
Ishikawa 1999; Moran et al. 2008; Moya et al. 2008). This
presents a seemingly tenuous situation, where the host is
dependent on its symbiotic bacteria to survive, but these

same bacteria have irrevocably lost the genomic dynamism
typical of bacteria and are incapable of restoring genes that
are lost through genome reduction. Here, we show one pos-
sible outcome of the complete loss of an essential amino
acid pathway in dual symbiotic system containing Sulcia
and a coresident symbiont: the lost pathway in Sulcia is com-
pletely retained in the cosymbiont, precisely conserving the
collective production of all ten essential amino acids by the
bacterial partners.

Materials and Methods
DNA Preparation

Spittlebugs were collected from Rosmarinus officinalis
(rosemary) bushes on the University of Arizona campus.
Red (containing Sulcia) and yellow (containing Zinderia) por-
tions of the bacteriomes were dissected from 4 to 5 insects
in phosphate-buffered saline. The volume was reduced to
10 pl, and the bacteriome tissue was lysed in 10 pl of cell
lysis buffer (400 mM KOH, 10 mM ethylenediaminetetra-
acetic acid, 100 mM dithiothreitol) on ice for 10 min, fol-
lowed by the addition of 10 pl of neutralization buffer
(400 mM HCI, 600 mM Tris—HCI, pH 7.5). Five separate
whole-genome amplification reactions were performed us-
ing 3 ul of the neutralized sample as template following the
instructions in the Amersham GenomiPhi V2 kit. This proce-
dure was repeated several times over the course of 2 years to
generate DNA for Roche 454 FLX, Roche 454 FLX Titanium,
and lllumina sequencing.

Genome Sequencing

The Sulcia genome was assembled into 10 contigs (274,670
nts) from a Roche 454 FLX run of 457,666 reads totaling
113,860,631 bases in Newbler version 1.1.02.15 and closed
by polymerase chain reaction (PCR) and Sanger sequencing.
The Zinderia genome was highly fragmented (50+ contigs)
and of poor quality at this stage, but it was clear that the
guanine + cytosine (GC) content was extremely low.

Due to the low GC content of the Zinderia genome, an
amplification-free lllumina protocol was used, as this was
reported to prevent biasing the sequencing library toward
GC-rich sequences (Kozarewa et al. 2009). A paired-end
run on an lllumina Genome Analyzer lIx generated
4,653,772 fifty-nine nt reads totaling 274,572,548
nts. The lllumina data were used to 1) correct homopoly-
mer errors in the Sulcia genome generated by 454 FLX (by
mapping the lllumina reads to the 454 genome with
BlastN; parameters: -G 2 -E 1 -FF -e 1e-15-W 7 -b 1 -v
1) and 2) attempt a de novo assembly of the Zinderia
genome. After removing the 355,976 lllumina reads
that mapped to the Sulcia genome, the remaining
4,297,796 reads were assembled using velvet (Zerbino
and Birney 2008) (velveth parameters: k = 41 —shortPaired,
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velvetg parameters: —ins_length 200 —cov_cutoff 20 —ex-
p_cov 255). The lllumina/velvet Zinderia assembly had 8
contigs totaling 212,107 nts with an average GC content
of 13.4%, and these contigs formed the core of the Zin-
deria genome.

A 454 FLX Titanium run was done in parallel to the lllu-
mina sequencing, which produced an additional 52,484
reads with an average length of 378 nts. These reads were
assembled with Newbler version 2.0.00.22, resulting in 34
Zinderia genome contigs with an average GC content of
13.7%. The eight lllumina/Velvet contigs were assembled
with the thirty-four 454 FLX Titanium contigs in phrap
(Felsenstein 1989), and the results were hand checked for
consistency. A few minor Velvet misassemblies were cor-
rected, and some contigs from each separate assembly were
joined, resulting in four supercontigs. These four supercon-
tigs were closed by PCR and Sanger sequencing. Both ge-
nomes were annotated as described previously
(McCutcheon and Moran 2007), except that Infernal
(Nawrocki et al. 2009) was used to predict the boundaries
of the ribosomal RNA genes.

Transmission Electron Microscopy

Yellow portions of the bacteriome, which exclusively con-
tains Zinderia, were dissected from spittlebugs and fixed
in room temperature 2.5% glutaraldehyde in 0.1 M 1,4-
piperazinediethane-sulfonic acid (PIPES) buffer pH 7.4 for
1 h. The bacteriomes were washed in 0.1 M PIPES, postfixed
in 1% osmium tetroxide, and washed for 10 min in deion-
ized water. The sample was dehydrated by 5—-10 min washes
in 50, 70, 90, and 100% ethanol. Microwave resin infiltra-
tion was done using a 1:1 mix of Spurr’s resin to ethanol at
250 W at 20 °C for 3 min in a vacuum; two additional in-
filtrations were done in pure Spurr’s resin, 25 W at 20 °C for
3 min in a vacuum. The samples were then left in Spurr's
resin for 30 min at room temperature and finally embedded
with an overnight incubation at 60 °C. Sixty nm sections
were cut onto uncoated copper mesh grids, stained with
2% uranyl acetate for 20 min followed by 2% lead acetate
for 2 min. Sections were viewed in an FEI CM12 transmission
electron microscope operated at 80 kV.

Phylogenetics

Individual protein alignments (FusA, RpIB, TufA, MnmG, and
RpoB) for the protein-based tree were produced using the
linsi module of MAFFT (Katoh et al. 2005), hand-edited to
remove poorly aligned regions, and concatenated. The re-
sulting data set had 73 species and 3,255 columns. Maxi-
mum likelihood trees were generated using RAxML
(relevant parameters: -d -m PROTGAMMAIJTT -x 12345 -#
200 -f a). A list of species (and GenBank accession numbers)
used in the generation of the protein tree can be found in the
supplemental materials (Supplementary Material online).

Fig. 1.—Transmission electron microscopy of a Zinderia-
containing bacteriocyte cell from Clastoptera arizonana. Three insect
nuclei are indicated with white asterisks. The scale bar is 10 pm.

The 16S rRNA-based tree was generated by aligning the
Zinderia 16S rDNA sequence to the Ribosomal RNA Data-
base (RDP) bacterial model using the RDP-based Infernal
aligner (Cole et al. 2009; Nawrocki et al. 2009), collecting
49 other high-quality Betaproteobacterial 16S rDNA se-
quences in the RDP database, and using this alignment to
generate a maximum likelihood tree in RAXML (relevant
parameters: -f a -x 12345 -# 100 -m GTRCAT).

Results

Spittlebugs Have Two Long-term Symbionts

Previous work showed that the spittlebug Clastoptera arizo-
nana contains Sulcia as a symbiont (hereby referred to as
Sulcia-CARI) (Moran et al. 2005). We identified a second
symbiont by universal 16S rDNA PCR (data not shown)
and transmission electron microscopy (fig. 1). Together,
these experiments revealed that the second symbiont was
a novel member of the Betaproteobacteria with large amor-
phous cells. This cell shape often indicates a bacterium that
has undergone substantial genome reduction (Moran et al.
2005; Nakabachi et al. 2006; McCutcheon et al. 2009b).
Therefore, in an ongoing effort to understand genome re-
duction in multiple bacterial lineages and to further docu-
ment complex symbioses containing diverse bacterial
partners, we sequenced the genomes from Sulcia-CARI
and the novel Betaproteobacteria for which we propose
the name Candidatus Zinderia insecticola (and will refer
to as Zinderia for simplicity).
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Fic. 2.—Whole-genome alignment for three Sulcia species. Each complete Sulcia genome is shown in a linear representation where each gene is
represented by a box. Boxes for genes involved in the synthesis of essential amino acids are colored red; all others are represented by white boxes except
for selected genes flanking the tryptophan biosynthetic pathway region. (a) The histogram above the linear genome schematic indicates the level of
conservation, where a higher bar represents greater sequence identity. Regions that are shared between all three genomes are colored orange; those
that are shared between Sulcia-CARI and Sulcia-DSEM are green; those shared between Sulcia-CARI and Sulcia-GWSS are blue; and those shared
between Sulcia-DSEM and Sulcia-GWSS are purple. The region flanking the tryptophan biosynthetic pathway is shaded in gray. (b) Zooming in on the
tryptophan biosynthesis region shows the precise nature of genome reduction, as no fragment of any gene in the tryptophan pathway remains.

Sulcia-CARI Does Not Encode the Tryptophan
Biosynthetic Pathway

The Sulcia-CARI genome is 276,511 nts in length, has
a 21.1% GC content, and codes for 246 protein-coding
genes, 29 tRNAs, and one copy each of tmRNA, RNase P
RNA, 5S, 16S, and 23S rDNA. A three-way alignment of
the Sulcia genomes from GWSS, DSEM, and CARI shows
that the only gross genomic changes between the lineages
are differential losses of various genes; there is complete co-
linearity among retained genes (fig. 2a). This striking pattern
of conservation was also observed in previous whole-
genome alignments between Sulcia-GWSS and Sulcia-
DSEM (McCutcheon et al. 2009a), as well as in previous
comparisons of other highly reduced bacterial symbiont
genomes (Tamas et al. 2002; Degnan et al. 2005), and this
result provides further confirmation of genome stability as
the prevailing pattern in reduced-genome symbionts. More
surprising was the complete loss of all six genes in the
tryptophan biosynthetic operon in Sulcia-CARI (fig. 2b),
as this is one of the eight essential amino acids produced
by Sulcia-GWSS and Sulcia-DSEM. All other genes involved
in the production of the remaining seven essential amino
acids (leucine, isoleucine, valine, threonine, lysine, arginine,

and phenylalanine) are conserved among all three Sulcia
genomes (fig. 2a).

Zinderia: A Betaproteobacterial Symbiont with
Extreme Genomic Features

The Zinderia genome is 208,564 nts and codes for 202
protein-coding genes, 25 tRNAs, and one copy each of
tmRNA, 5S, 16S, and 23S rDNA. Similar to other insect sym-
bionts with highly reduced genomes, Zinderia does not
code for genes involved in making a cell membrane, pep-
tidoglycan, nucleotides, or vitamin cofactors. Zinderia is
not capable of doing most reactions involved in carbohy-
drate metabolism—including glycolysis and the citric acid
cycle—and seems incapable of making adenosine triphos-
phate (ATP), as no F1FO ATPase is present and no obvious
pathway for substrate-level phosphorylation exists. The Zin-
deria genome does however encode homologs for all 14
genes of the minimal NADH:ubiquinone oxidoreductase |
proton translocation machinery (nuoABCDEFGHIUKLMN),
all four genes in the cytochrome bo terminal oxidase com-
plex (cyoABCD), and various electron transfer proteins, but
the functions of these genes are unclear in the context of
such a limited gene repertoire. Similar to other highly

Genome Biol. Evol. 2:708-718. doi:10.1093/gbe/evg055 Advance Access publication September 9, 2010 711

0TOZ ‘9 180100 U0 BUBIUO JO AlSIaniun ayl e Bio'sreunolployxo-aqb woly papeojumoq


http://gbe.oxfordjournals.org/

McCutcheon and Moran

GBE

100

97

Burkholderia ambifaria MC40-6
Burkholderia sp. 383
Burkholderia ambifaria AMMD
Burkholderia cenocepacia 12315
Burkholderia cenocepacia AU 1054
Burkholderia cenocepacia H12424
Burkholderia cenocepacia MC0-3
Burkholderia vietnamiensis G4
Burkholderia multivorans ATCC 17616
Burkholderia pseudomallei 1710b
Burkholderia mallei SAVP1
Burkholderia pseudomallei 668
Burkholderia pseudomallei K96243
Burkholderia pseudomallei 1106a
Burkholderia mallei NCTC 10229
Burkholderia mallei NCTC 10247
Burkholderia thailandensis E264
Burkholderia glumae BGR1
Burkholderia phymatum STM815
Burkholderia phytofirmans PsJN
Ralstonia eutropha H16
Cupriavidus taiwanensis
Ralstonia eutropha JMP134
Ralstonia metallidurans CH34
Ralstonia pickettii 12D
Ralstonia pickettii 12J
Ralstonia solanacearum GMI1000
Polynucleobacter necessarius STIR1
Polynucleobacter necessarius QLW-P1DMWA-1
Methylibium petroleiphilum PM1
Leptathrix cholodnii SP-6
Rhodoferax ferrireducens T118
Polaromonas sp. 15666
Polaromonas naphthalenivorans CJ2
Verminephrobacter eiseniae EF01-2
Acidovorax citrulli AAC00-1
Delftia acidovorans SPH-1
Comamonas testosteroni CNB-2
Diaphorobacter sp. TPSY
Acidovorax sp. 1542
Variovorax paradoxus S110

94,

100

03

Burkholderiaceae

unkown placement

Comamonadaceae

100— Herminiimonas arsenicoxydans
Janthinobacterium sp. Marseille
100 Bordetella petrii DSM 12804
Bordetella avium 197N
Bordetella pertussis Tohama |
Bordetella bronchiseptica RBSO
Bordetella parapertussis 12822
Methylobacillus ﬂa?eﬁﬂms KT
Methylovorus sp. SIP3-4
Methylotenera mobilis JLW8
Nitrosospira multiformis ATCC 25196
Nitrosomonas eutropha C91
Nitrosomonas europaea ATCC 19718
Thiebacillus denitrificans ATCC 25259
Aromatoleum aromaticum EbN1
Thauera sp. MZ1T
Azoarcus sp. BH72
Dechloromonas aromatica RCB
Accumulibacter phosphatis UW-1
_:C hromobacterium violaceum ATCC 12472
Laribacter hongkongensis HLHK9

9|

100 Neisseria meningitidis 053442

Neisseria gonorrhoeae FA 1090

Neisseria gonorrhoeae NCCP11945
Neisseria meningitidis alpha14
Neisseria meningitidis MC58
Neisseria meningitidis 22491
Neisseria meningitidis FAM18

Escherichia coli MG1655
4|:[Sa,’moneua enterica CT18
Klebsiella pneumoniae MGH 78578

Collimonas fungivorans (AJ310394.2)

Collimonas pratensis (AY281137.1)

Collimonas arenae (AY2811 46.1RA

Herminiimonas saxobsidens (AM493906.1)
-Herminiimonas glaciei (EU489741.1)
Herminiimonas aquatilis (AM085762.1)
Oxalicibacterium flavum (AY061962.2)
Herminiimonas fonticola (AY676462.1)
Herminiimenas arsenicoxydans (AY728038.1)
Massilia aurea (AM231588.1)
-Janthinobacterium lividum (Y08846.1)
-Janthinobacterium agaricidamnosum (Y08845.1)

100,

Telluria chitinolytica (X65590.1)
Telluria mixta (X65589.1)
Duganella zoogloeoides (D14256.1)
Duganella violaceinigra (AY376163.1)
Massilia plicata (AY966000.1)

Massilia dura (AY965998.1)

i 100 Diaphorina citri endosymbiont (AB038368.1)
99;0mfobacrer formigenes (U49750.1)

Oxalobacter formigenes (U49757.2)

% Comamonadaceae and Burkholderiaceae

Zinderia

Oxalobacteraceae

Alcaligenaceae
Methylophilaceae

Nitrosomonadaceae
Hydrogenophilaceae

Rhodocylaceae

Neisseriaceae

Gammaproteobacteria

Zinderia

0.2

Oxalobacteraceae

Fic. 3.—Phylogenetic analysis indicates that Zinderia is a Betaproteobacteria in the family Oxalobacteraceae. Select bootstrap values greater than
70 are shown on each maximum likelihood tree. The tree in (a) was calculated from a concatenated alignment of several protein sequences and that in
(b) was calculated from the 16S rDNA sequence alone.
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reduced symbiont genomes (McCutcheon 2010), the Zinde-
ria genome contains a minimal set of gene orthologs in-
volved in genome replication, transcription, and
translation (supplementary fig. S1, Supplementary Material
online). Phylogenetic analyses with concatenated protein
(fig. 3a) and 16S rDNA (fig. 3b) sequences clearly define Zin-
deria as member of the Betaproteobacteria and suggest that
genera in the Oxalobacteraceae (e.g., Oxalobacter, Hermi-
niimonas, and Janthinobacterium) are its closest free-living
relatives, although this should be interpreted with some
caution as the branch lengths on the Zinderia lineage are
extremely long (fig. 3a and b).

The genome sequence strongly suggests that Zinderia
uses an alternative genetic code, in which UGA codes for
tryptophan instead of stop. This code change has been re-
ported in certain lineages of Mollicutes, such as Mycoplasma
(Yamao et al. 1985), the Alphaproteobacteria Candidatus
Hodgkinia cicadicola (McCutcheon et al. 2009b), some cil-
iate nuclear genomes (Lozupone et al. 2001), and in several
mitochondrial lineages (Knight et al. 2001). Evidence for the
mapping of UGA to tryptophan in Zinderia comes from mul-
tiple sequence alignments of proteins, which show trypto-
phan occurring in several highly conserved positions in other
Proteobacteria that are coded for by UGA in Zinderia (fig. 4).
If UGA is assumed to be reassigned, 360 of 374 (96%) of the
putative tryptophans encoded in Zinderia open-reading
frames use the UGA codon, whereas only 14 use the stan-
dard tryptophan codon UGG. This usage pattern is consis-
tent with that of other degenerate codon families in
Zinderia, where the more AT-rich codon is always used pref-
erentially over the more GC-rich codon (supplementary
table S1, Supplementary Material online).

The genomic GC content of Zinderia is 13.5%, the lowest
yet observed in any cellular genome. This is also lower than
any reported viral genome (at 17.8%, the Entomopoxvirus
Amsacta moorei [Bawden et al. 2000] has the lowest GC
content of all 3,573 viral genomes listed in the GenBank
Viral Genomes Resource, http://www.ncbi.nlm.nih.gov
/genomes/VIRUSES/viruses.html) and lower than the vast
majority of organellar genomes (only 4 out of the 3,472 ge-
nomes listed in the GOBASE Organelle Genome Database
[O'Brien et al. 2009] have a lower GC content; the lowest
is 10.9% GC in the mitochondrion of the yeast Kluyveromy-
ces bacillisporus [Bouchier et al. 2009]). Although the GC
content of the protein-coding regions is 13.2% overall,
the GC content of first, second, and third codon positions
are 17.5, 18.8, and 3.3%, respectively. This pattern suggests
a strong mutational bias toward AT in the genome, with pu-
rifying selection acting on the first and second codon posi-
tion to maintain amino acid residues, similar to what has
been observed in other reduced genomes with strong com-
positional bias (Moran and Wernegreen 2000). As expected
from previous work (Moran 1996; Clark et al. 1999), this
extreme GC bias has a profound effect on the amino acid

1 2‘27
Zinderia GEMEV.ALEAY
Janthinobacterium GEMEVWALEAY
Herminiimonas GEMEVWALEAY
Burkholderia GEMEVWALEAY
Neisseria GEMEVWALEAY
Sinorhizobium GEMEVWALEAY
Escherichia GEMEVWALEAY
181
Zinderia EAMKD . IKNVK
Janthinobacterium EAMRDWVTNIE
Herminiimonas EAMRDWVTNIE
Burkholderia EAMRDWVTNIE
Neisseria EAMREWVARVD
Sinorhizobium EALRDWVTNVD
Escherichia EALRDWSGSYE
537
Zinderia DILDV.FDSGV
Janthinobacterium DTLDVWFDSGC
Herminiimonas DTLDVWFDSGT
Burkholderia DTLDVWFDSGS
Neisseria DTMDVWFDSGS
Sinorhizobium DILDVWFDSGS
Escherichia DTLDVWFDSGS

Fic. 4.—Alignment of conserved regions of proteins suggests that
UGA codes for tryptophan in the Zinderia genome. The numbers
indicate the position in the Zinderia protein. Zinderia, Janthinobacterium
(GenBank accession: NC_009659), Herminiimonas (NC_009138),
Burkholderia (NC_008784, NC_008785), and Neisseria (NC_003112)
are all Betaproteobacteria; Sinorhizobium (NC_003047) is an Alphap-
roteobacteria and Escherichia (NC_000913) is a Gammaproteobacteria.

profile of the Zinderia proteome; 36.1% of all amino
acid residues are either isoleucine (58.9% ATA, 40.6%
ATT, 0.5% ATC) or lysine (97.9% AAA, 2.1% AAG), and
amino acids with GC-rich codons are greatly underrepre-
sented compared with organisms with more balanced geno-
mic GC contents (fig. 5 and supplementary table ST,
Supplementary Material online).

Zinderia Is Able to Produce Three Essential Amino
Acids

It is thought that all animals have lost the ability to make ten
amino acids (the essential amino acids) and that these com-
pounds are not present in high levels in xylem sap (Redak
et al. 2004). Therefore, because the tryptophan biosynthetic
pathway was lost in Sulcia-CARI and the previously studied
cosymbionts of Sulcia in GWSS and DSEM produced methi-
onine and histidine (Wu et al. 2006; McCutcheon et al.
2009a), it was of interest to see if Zinderia had gene homo-
logs for the production of tryptophan, methionine, and his-
tidine. Genome analysis indicates that this is the
case—Zinderia makes exactly this set of amino acids
(fig. 6). In the production of methionine, Zinderia uses
the direct sulfhydrylation pathway (metXY), which is unique
in insect nutritional symbionts; all previous examples use the
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A C D E F G H | K

GCA TGA GAC GAA TTC GGA
GCC TGC GAT GAG TTT GGC
GCG GGG
GCT GGT

CAT ATT AAG

CAC ATC AAA CTA ATG AAC CCA

L M N P Q R S T V W Y
CCA CGA TCA ACA GTA TGA® TAC

CTC AAT CCC CCG CGC TCC ACC GTC TGG TAT

CTG cce CGG TCG ACG GTG

CTT ccT CGT TCT ACT GTT

TTA AGA

TTG AGG

Fic. 5.—Amino acid frequency distributions for six bacterial genomes reveal extreme biases in GC-poor symbiont genomes. The asterisk on TGA
indicates that this codon has been reassigned to tryptophan in the Hodgkinia and Zinderia genomes. The most GC-poor codons (e.g., phenylalanine [F],
isoleucine [I], lysine [K], aparagine [N], and tyrosine [Y]) are all overrepresented in reduced symbiont genomes that are GC-poor such as Zinderia,
Carsonella, and Buchnera. The opposite pattern of GC-rich codons being overrepresented in tiny GC-rich symbiont genomes such as Hodgkinia is
apparent in some (e.g., alanine [A]) but not all (e.g., proline [P] and glutamine [Q]) codon families.

transsulfuration pathway (metABC) (Hacham et al. 2003). In
the production of both histidine and tryptophan, Zinderia
has gene homologs for all the standard reactions, although
shikimate is needed as a precursor in the production of tryp-
tophan, as homologs of genes for the conversion of phos-
phoenolpyruvate (PEP) to shikimate (aroABDE) are missing in
Zinderia. Sulcia-CARI has retained all genes for the conver-
sion of PEP to phenylalanine, including aroABDE, and may
be the source of shikimate for tryptophan production in
Zinderia.

Discussion

The Tryptophan Operon Is Precisely Excised in
Sulcia-CARI

Bacterial mutation exhibits an inherent deletional bias
(Andersson and Andersson 1999a, 2001; Mira et al.

2001), and this bias has two important consequences.
The first is that intergenic regions are typically small, result-
ing in a coding density that is stable (about 1 gene every
1,000 bases) across the entire two orders of magnitude
range of bacterial genome size (Bentley and Parkhill
2004; Ochman and Davalos 2006). The second is that a gene
that no longer provides a selective advantage in a certain
environment does not persist over long periods of time;
when selection is no longer strong enough to maintain
a gene it is pseudogenized and eventually the DNA is re-
moved from the genome (Andersson et al. 1998; Mira
et al. 2001; Ochman and Davalos 2006). Because obligate
endosymbionts have small effective population sizes (which
limits the efficacy of selection) and live exclusively in a stable
and metabolically rich environment, they lose many genes
that are retained in free-living bacterial genomes, even
genes that are slightly beneficial (Andersson and Andersson
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Fic. 6.—The essential amino acid metabolisms of three Sulcia-containing dual symbiont systems. Complete pathways for the production of
essential amino acids (red font) or related cofactor compounds (blue font; Hodgkinia uses the B12-dependent version of methionine synthase in the last
step of methioine production [McCutcheon et al. 2009a]) are shown. Missing genes are represented in a light gray font. Note the three different

pathways taken in the production of methionine in Sulcia’s cosymbionts.
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1999a, 2001; Moran 2003). The process of genome reduc-
tion in obligate endosymbionts seems to have two phases,
where early in the symbiosis large blocks of sequence cor-
responding to many unrelated genes can be lost (Moran and
Mira 2001; Nilsson et al. 2005), followed by a later phase of
DNA loss in smaller blocks of sequence (Moran et al. 2009).
The pattern of loss seen in the region of the Sulcia-CARI ge-
nome that codes for the tryptophan pathway in the other
Sulcia genomes demonstrates the precision of the later
phase of genome reduction (fig. 2b). No remnant of any
gene in the tryptophan pathway remains in the Sulcia-CARI
genome, and intergenic regions between the flanking genes
that are conserved in all three Sulcia genomes (tilS and proS)
are nonexistent, as the coding region of remaining interven-
ing gene in Sulcia-CARI (tal) overlaps the coding region of
both flanking genes.

Evolutionary Origins of the Observed Genomic
Patterns

Given the long time periods involved and the lack of known
intermediate steps, it is hard to delineate a model that de-
scribes the evolutionary processes required to arrive at the
genome structures observed in the three Sulcia-containing
insect systems sequenced to date. A few facts are known,
however, that fix some points along the paths taken to arrive
at these structures: 1) based on the insect fossil record and
phylogenetic reconstructions, the initial Sulcia infection was
acquired by the auchenorrhynchan ancestor at least 260 Ma
(Moran et al. 2005), 2) again based on the insect fossil re-
cord, the split between cicadas, spittlebugs, and sharp-
shooters was at least 200 Ma (Shcherbakov and Popov
2002), and 3) the extreme size and features of the Zinderia
genome suggest that it is an ancient association not a recent
symbiont acquisition. Therefore, by 200 Ma, the genomic
structure of Sulcia was likely similar to what is observed
in Sulcia-GWSS and Sulcia-SDEM, with Sulcia producing 8
of the 10 essential amino acids. This is consistent with ex-
tensive gene loss in the Sulcia lineage early in the symbiosis
and suggests that Sulcia had lost the ability to produce me-
thionine and histidine early in its association with insects,
prior to the common ancestor of cicadas, sharpshooters,
and spittlebugs, at least 200 Ma. Furthermore, this means
that Sulcia has likely had a cosymbiont for at least 200 Ma
because all extant examples of Sulcia-containing symbioses
collectively make all ten essential amino acids, which implies
that all ten are required.

Ten Amino Acids by Any Means Necessary: Sulcia
and Its Cosymbionts in Three Insect Systems

Whatever the timing and mechanism of genome reduction
that lead to the current metabolic contributions schema-
tized in figure 6, the myriad mechanisms that Sulcia’s diverse
cosymbionts have evolved to complement the respective

Sulcia genome are remarkable. The three distinct paths
taken by Zinderia, Baumannia, and Hodgkinia in the produc-
tion of methionine exemplify this point. Zinderia uses the
direct sulfhydrylation pathway (metXY) in the production
of methionine, whereas Baumannia and Hodgkinia use
the transsulfuration pathway (metABC). Despite using the
same pathway in the production of homocysteine, Bauman-
nia and Hodgkinia use different enzymes for its conversion
to methionine; Baumannia uses the cobalamin (vitamin B,)-
independent version of methionine synthase (MetE),
whereas Hodgkinia uses the cobalamin-dependent version
(MetH). Hodgkinia is therefore obliged to retain a large
number of genes responsible for the production of the com-
plex vitamin cofactor cobalamin (cobAJMLHNSTOQDP),
a gene complement that corresponds to about 7% of its
proteome (McCutcheon et al. 2009a). It is sometimes un-
clear whether these differences reflect the phylogenetic or-
igin of the symbiont or the random nature of genome
reduction (McCutcheon et al. 2009a), but in the case of Zin-
deria’s use of the direct sulfhydrylation pathway in the pro-
duction of methionine, it seems largely a phylogenetic
signal, as Herminiimonas arsenicoxydans and Janthinobac-
terium sp. Marseille, Zinderia's closest free-living relatives,
both encode copies of metX and metY but not metA or
metB (both however do encode metC, which can also be
used in cysteine degradation) (Audic et al. 2007; Muller
et al. 2007).

When examined at the level of essential amino acid pro-
duction, the three systems shown in figure 6 present a strik-
ing case of convergent evolution in the context of
a common selection pressure to retain the capacity for a full
complement of amino acids. In all three pairs of symbionts,
no genes involved exclusively in essential amino acid produc-
tion overlap in a genome pair, with the exception of aroKAC
in Sulcia-CARI and Zinderia (a few genes that function in
two or more pathways, such as carAB, which have roles
in amino acid and nucleotide production, are present in both
Sulcia-GWSS and Baumannia). Our new findings for Zinde-
ria reveal the first reported case of extreme genome reduc-
tion for a member of the Betaproteobacteria. (As members
of the Alpha-, Beta-, and Gammaproteobacteria, Hodgki-
nia, Zinderia, and Baumannia are estimated to have di-
verged from each other at least 2 billion years ago
[Battistuzzi et al. 2004]). Each cosymbiont developed a sep-
arate symbiosis with the insect host and Sulcia, underwent
massive amounts of genome reduction, and converged on
a gene set that perfectly complements their Sulcia partner;
this finding highlights the critical role that these symbionts
play in the biology of their insect hosts.

These results are similar to what has been observed in the
pea aphid Cinara cedri, where part of the tryptophan path-
way is retained on a plasmid of the endocellular symbiont
Buchnera, and the remaining genes are present in the co-
residing symbiont Candidatus Serratia symbiotica (Gosalbes
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et al. 2008). In this case, however, the level of complemen-
tarity is not precisely known because the Serratia genome is
not yet complete.

Candidatus Zinderia Insecticola, a Novel Symbiont
of Spittlebugs

We propose the name Candidatus Zinderia insecticola for
the Betaproteobacterial symbiont of spittlebugs described
here. The genus refers to the geneticist Norton D. Zinder
(born 1928), and the species name refers to Zinderia's exclu-
sive presence in insect hosts. Distinctive features include
large amorphous cells, an existence restricted to the host cell
cytoplasm, a low GC content, a recoding of UGA from stop
to tryptophan, and the unigue 16S rDNA sequence CTAGT-
TATTAAATTAAAAATAAAATTTAGTAACG (positions 826—
858, Escherichia coli numbering).

Supplementary Material

Supplementary figure ST and table S1 are available at
Genome Biology and Evolution online (http://www.gbe.
oxfordjournals.org/).
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