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The bacterial essence of tiny symbiont genomes
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Bacterial genomes vary in size over two orders of magnitude.
The Mycoplasma genitalium genome has historically defined
the extreme small end of this spectrum, and has therefore
heavily informed theoretical and experimental work aimed at
determining the minimal gene content necessary to support
cellular life. Recent genomic data from insect symbionts have
revealed bacterial genomes that are incredibly small — two to
four times smaller than M. genitalium — and these tiny
genomes have raised questions about the limits of genome
reduction and have blurred the once-clear distinction between
autonomous cellular life and highly integrated organelle. New
data from various systems with symbiotic bacterial or archaeal
partners have begun to shed light on how these bacteria may
function with such small gene sets, but major mechanistic
questions remain.
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Introduction

In most bacterial genomes, genes are tightly packed and
uniformly distributed at about one gene per kilobase (kb)
[1], so that in most cases genome reduction implies gene
loss. Bacteria that have close associations with animals
often show reduced genomes compared to free-living
relatives [2-4], and for decades the smallest cellular
genome observed in nature was from the human pathogen
Mycoplasma genitalium [5,6]. As the ancestors of both
mitochondria and chloroplasts were free-living bacteria
[7,8], they can be considered the most extreme examples
of bacterial genome reduction. Despite their bacterial
origins, however, mitochondria and chloroplasts are
defined as cellular organelles, not as autonomous bacteria.
This distinction is based on lifestyle and gene content:

M. genitalium can be grown in the lab, while organelles are
highly genetically integrated with the nucleus and are
completely dependent on being in the host environment
[7,8]; M. genitalium has 524 genes in a 580 kb genome [6],
while the largest mitochondrial genome has 97 genes in a
69 kb genome [9], and the most gene-rich chloroplast
genome has 253 genes in a 191 kb genome [10]. A long-
standing empirical limit for genome reduction in
autonomous bacteria was therefore established by the
mycoplasma, remaining clearly distinct from organelles
by almost any measure except their shared bacterial
ancestry.

This clean differentiation between organelle and inde-
pendent bacteria has been muddied in the last few years
by data from genome sequencing projects targeting
uncultured intracellular symbionts of insects. This review
will briefly describe these tiny symbiont genomes and
discuss them in the context of the minimal genome
concept, compare their gene content with that of orga-
nelles, and summarize recent experiments that give the
first clues as to how these organisms might survive with
such small gene sets.

Bacterial endosymbionts of insects

Like all animals, insects form associations with diverse
bacterial lineages [4]. These symbioses vary by type,
falling anywhere on the parasitic-commensal-mutualistic
continuum. Once established, these relationships are not
necessarily static, sometimes rapidly switching between
association type (e.g. from parasite to mutualist [11°°]).
The intimacy of the interactions can also vary, as sym-
bionts can be horizontally transferred among unrelated
insects and/or strictly vertically transmitted in a species-
specific manner, and are found in a wide range of tissues,
from the extracellular space of the gut to the cytoplasm
of specialized host cells. A well-known example of an
intracellular parasite that can be either horizontally or
vertically transferred is the reproductive manipulator
Wolbachia, an a-Proteobacteria which skews the sex ratios
of offspring in infected mothers [12°]. Many insects with
restricted or specialized diets (e.g. plant sap or animal
blood) have one or more intracellular bacterial mutualist,
which provision the insect with nutrients that are missing
in their diet [13,14]. These associations are usually extre-
mely stable — in some cases cospeciating for hundreds of
millions of years — by virtue of strict transovarial trans-
mission of the symbionts through insect generations
[15,16]. Most of these associations are thought to be
reciprocally obligate, that is, neither the insect nor its
symbiotic bacteria can survive without the other [14,17].
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These symbionts also tend to have highly reduced gen-
omes compared to their free-living relatives [4].

The first several insect nutritional symbionts to have their
genomes sequenced — all y-Proteobacteria — included
three strains of the aphid symbiont Buchnera aphidicola
[15,18,19], the tsetse fly symbiont Wigglesworthia glossini-
dia [20], and two strains of the carpenter ant symbiont
Blochmannia [21,22]. While all of these symbionts showed
significant levels of genome reduction (616-792 kb) and
their limited gene sets indicated they could not (easily)
live outside the host cell environment, their genome sizes
were above the minimal size threshold established by .
genitalium (although physical mapping of various Buchnera
strains indicated that some had smaller genomes, in the
range of 450 kb [23]).

Recent results from genome sequencing of diverse bac-
terial symbionts of sap-feeding insects have begun to blur
the clear distinction between independent bacterial life
and organelle, crashing through the 500 kb genome bar-
rier established by M. genitalium in dramatic fashion. In
20006, the 422 kb genome from B. aphidicola Cc [24] and
the 160 kb genome from Carsonella ruddii [25], a y-Pro-
teobacterial symbiont of psyllid, were reported. The next
year, a Bacteroidetes called Su/cia muelleri, which is sym-
biotic with the glassy-winged sharpshooter, was reported
to have a genome of 245 kb [26]. Finally, in 2009, the
genome for an a-Proteobacterial symbiont of singing
cicadas, Hodgkinia cicadicola, was shown to have a genome
of only 144 kb, encoding a paltry 188 genes [27°]. (Carso-
nella is the sole symbiont in the species of psyllid studied,
but Buchnera Ce [28), Sulcia [16,26,29], and Hodgkinia [30]
all have cosymbionts inhabiting the same insect tissue;
Sulcia and Hodgkinia are partners in cicada.) Amazingly,
Carsonella and Hodgkinia have smaller genomes and fewer
protein-coding genes than some chloroplasts (Figure 1),
and questions as to whether or not these organisms can
still be considered autonomous bacteria have arisen
[31°,32].

Metabolic versus genetic integration and the
minimal genome concept

The small genome of M. genitalium has made it a central
player in the ‘minimal genome concept,” which can be
defined as the experimental and computational search for
the minimal gene content required for independent life,
given the richest possible growth environment [33-39].
Predictions of the minimal genome, based on ecither
comparative genomics [33,37] or global transposition
mutagenesis of M. genitalium [38], range from about 200
to 400 genes.

The organism(s) that would fulfill the minimal genome
concept are usually, but not always [39], assumed to be
both genetically and metabolically independent. That is,
these organisms would be capable of replicating their

genome, transcribing RNA, and translating protein
(genetic independence); and would be able to obtain
energy from simple metabolites to make nucleotides,
amino acids, lipids, and cofactors (metabolic indepen-
dence). Gene content analysis of Buchnera Cc, Sulcia,
Carsonella, and Hodgkinia reveal that these organisms
are not metabolically independent, as they cannot make
fatty acids (except Buchnera), phospholipids, nucleotides,
pyridines, and in the case of Buchnera Cc and Hodgkinia,
have lost their F{Fy ATP synthase. This loss of metabolic
independence is typical of both intracellular [2] and
extracellular [40] symbionts. It is assumed that the
required compounds are somehow derived from the host
(or possibly a cosymbiont, in some systems), but the
mechanisms are not well understood. Therefore, the
remainder of this discussion will focus on the potential
genetic independence of the most highly reduced sym-
biont genomes.

The gene contents of symbiont and organelle
genomes are different

While the number of genes predicted in the smallest
symbiont genomes rival that of some organelles, gene
content analysis reveals a clear difference in retained
activities (Figure 1). Insect symbionts have retained
genes involved in the core enzymatic activities involved
in chromosome replication, transcription, and translation,
while in organellar genomes many of these functions have
been lost, with some exceptions (Figure 1). For example,
all of the bacterial symbionts contain a homolog of the
core replicative DNA polymerase (@nakE), the protein
responsible for the 5-3’ polymerization activity of the
replication holoenzyme, but lack homologs for many of
the accessory components involved in increasing proces-
sivity, initiation, and error correction (Figure 1). These
patterns suggest, not surprisingly [8], that the forces
governing gene loss in symbionts and organelles are
different. Although it is not at all clear how the genes
present in symbiont genomes could work to form a fully
functional replicating unit, they do suggest a stronger
bacterial identity for nutritional symbionts than for orga-
nelles.

There are a number of possible ways these symbionts
could cope with such small gene sets, such as: first, the
transfer of some genes to the nucleus for subsequent
reimportation, similar to what is observed in organelles;
second, the importation of host (or cosymbiont) proteins
or RNAs that complement the lost activities, or, perhaps
most interestingly; third, the evolution of unexpected
coadaptations to the loss of various genes, resulting in
mechanisms for cellular processes that are difficult to
predict. While some data exist concerning the host’s role
in the symbiosis [41], there is no information presently
available concerning the import of proteins or RNA into
these symbionts, so this point will not be discussed
further.
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Gene content of the smallest cellular genomes and some organelles. Genes present in the four smallest bacterial genomes [24,25,27°,30] together with
large [9,10] and more typical [56,57] mitochondrial and chloroplast genomes are shown as colored circles, missing genes as open circles. The number of
protein-coding genes is shown in parentheses after the organism name. Abbreviations: mitochondria (mito.) and chloroplast (chlor). Rows for genes
present in all four symbiont genomes are highlighted in yellow. Asterisks represent genes that are highly divergent from typical sequences. Numbered
positions indicate: (1) translational release factor 2 (prfB) is not needed in the Hodgkinia genome because the stop codon UGA has been recoded as
tryptophan [27°]; (2) Sulcia uses the single subunit version of glycyl-tRNA synthetase; and (3) these aminoacyl-tRNA synthetases are not necessary
because of the presence of proteins (GatAB) that catalyze a tRNA-dependent amidotransferase activity [58]. The numbers of retained ribosomal genes are
shown in the table at the bottom right of the figure. The genes listed in this figure are a subset of genes listed in the smallest minimal genome set [37].
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Is gene transfer the answer?

Given the extremely small gene sets of these insect
endosymbionts, it is tempting to speculate whether some
of the lost genes have been transferred to the host nucleus
for subsequent expression and protein reimportation to
the symbiont [25,42], as this process has occurred with
some frequency in organelles, and in fact has been shown
to be ongoing in some cases [8]. This idea might be
considered particularly seductive given the apparent ease
with which Wolbachia species — another transovarially
transmitted intracellular bacterial symbiont found in
insects and other invertebrates — have been shown to
exchange DNA with the host nucleus [43-49]. Remark-
ably, some of these Wolbachia-to-host transfers include
DNA fragments approaching the size of entire Wolbachia
genomes (about 1 Mb) [44°°]. Early evidence suggested
that the majority of these transferred genes were non-
functional, as they typically are not expressed at high
levels and contain mutations that would result in non-
functional proteins if expressed in the recipient host cell
[44°°,49,50]. However, recent experiments from various
systems have shown that some transferred genes might be
functional, in that they contain no premature stop codons,
are undergoing purifying selection, and in some cases are

expressed at high levels in the appropriate tissues [45-
47].

Of particular relevance here is the report of transferred
bacterial genes in the pea aphid Acyrthosiphon pisum [47],
as the pea aphid is host to B. aphidicola, a long-term
coevolving bacterial symbiont with a reduced genome.
While Buchnera from the pea aphid does not show as much
genome reduction as Hodgkinia, Carsonella, or Sulcia, at
641 kb it is still a small bacterial genome [18], and its
publication has fueled speculation that some lost genes
might have been transferred to the host nucleus [42]. By
analyzing an mRNA expression library made from aphid
tissues for genes that looked bacterial in nature, two
potential transfers were identified: /ZcA (LD-carboxypep-
tidase) and 7p/A (rare lipoprotein A) [47]. Phylogenetic
analysis indicated that /dcA was derived from a Wolbachia-
like a-Proteobacteria, while the classification of 7p/A was
less clear [47]. Importantly, both genes were preferen-
tially expressed in the tissue type containing bacterial
symbionts [47]. These results suggest two interesting
possibilities: first, the maintenance of some symbioses
may be aided by genes transferred to the host from
unrelated bacterial lineages and second, lost Buchnera
genes could be complemented by genes transferred to
the host nucleus from an unrelated symbiotic bacterium
such as Wolbachia. Although these data are preliminary,
they also hint at the possibility that the large amount of
genome reduction seen in insect symbionts may not have
been accompanied by gene transfer to the host nucleus, as
no clear case of gene transfer from Buchnera was observed
in this study. It should be noted that firm results on the
number of potentially transferred Buchnera genes will

soon be available upon completion and analysis of the
pea aphid genome [NCBI Aphid Genome Resources;
URL: www.ncbi.nlm.nih.gov/projects/genome/guide/
aphid/].

It is important to note that although both Wo/lbachia and
insect nutritional symbionts are transferred via a transo-
varial route, the timing and cell biology of these transfers
are different. In the fruit fly, Wolbachia is intimately
associated with germ line cells throughout the develop-
ment of an infected insect, including cytoplasmic local-
ization in the germ line stem cells and physical
association with oocyte nuclei at later points in oogenesis
(e.g. see [51]). By contrast, in aphid development (the
best-studied system for insect nutritional symbionts,
though the rough outlines seem similar in other sap-
feeding insects [13]), Buchnera cells are not transferred
to the oocyte until later in oogenesis, where the bacteria
are held in a matrix of filamentous actin at the posterior
end of the egg until being cellularized by the developing
embryo (e.g. see [52]). If further work continues to show a
dearth of gene transfer between nutritional symbionts
and their hosts compared with Wolbachia, the close
association with the germ line in the latter may account
for the difference.

Unexpected coadaptations to gene loss

The concept of an ‘essential’ gene is difficult to precisely
define. Some genes are required only in certain metabolic
contexts, and other genes found to be required exper-
imentally in one bacterial lineage are completely missing
in other lineages [36,53,54]. Furthermore, there are only
about 60 universally conserved proteins derived from the
analysis of genome projects, this list being dominated by
translation-related functions [36]. Clearly, though, there
are a core of highly conserved genes that seem to have
essential activities for which it is difficult to imagine how
the cell survives without. One possible solution to the
problem of ‘essential’ gene loss that is rarely mentioned is
the emergence of novel coadaptations elsewhere in the
genome to accommodate the lost activity [54]. The main
problem with this solution is that mechanisms are difficult
to imagine in many cases, and concrete examples have
been rare until recently.

The most compelling example of coadaptation to the loss
of an ‘essential’ gene comes from the smallest Archaeal
genome, Nanoarchaeum equitans, the extracellular symbiont
of Ignicoccus hospitalis (itself an archaeon) [40]. Nanoarch-
aeum — as well as Sulcia, Carsonella, and Hodgkinia — lacks
the ribonucleoprotein RNase P, the enzyme involved in
processing 5’ leader sequence from tRNAs. RNase P is a
(nearly) ubiquitous enzyme, and therefore is included in
even the smallest proposed minimal genome [37]. The
absence of RNase P in Nanoarchaeum prompted Séll and
colleagues to look at this system more closely, where they
found that unlike most organisms, Nanoarchaeum tRNAs

Current Opinion in Microbiology 2009, 13:1-6

www.sciencedirect.com

Please cite this article in press as: McCutcheon JP. The bacterial essence of tiny symbiont genomes, Curr Opin Microbiol (2009), doi:10.1016/j.mib.2009.12.002



http://www.ncbi.nlm.nih.gov/projects/genome/guide/aphid/
http://www.ncbi.nlm.nih.gov/projects/genome/guide/aphid/
http://dx.doi.org/10.1016/j.mib.2009.12.002

COMICR-724; NO OF PAGES 6

have transcriptional promoters placed at uniform distances
upstream of the first base of the tRNA [55°°]. This precise
promoter positioning allows for leaderless tRNAs; if tran-
scription always starts at the first base of tRNA, RNase P is
no longer needed. This result shows how the cell can cope
with the loss of an ‘essential’ and nearly universal gene in a
novel and unexpected way, and serves as a warning not to
expect cellular processes, even highly conserved and see-
mingly essential ones, to proceed by standard mechanisms
in highly reduced symbiont genomes.

Conclusions

Continued sequencing of symbiont genomes, whether
from insects or elsewhere, will likely continue to uncover
organisms with even smaller gene sets than the ones
discussed here. These genomes will continue to contrib-
ute to our understanding of the breadth and depth of
bacterial symbioses with animals, but will likely not
advance the field in terms of understanding how these
organisms survive with such limited gene sets. It seems
reasonable that the answer lies in a complex combination
of metabolite, protein, and/or RNA importation com-
bined with both small incremental and large unexpected
coadaptations to the loss of genes. Untangling this web
will not be easy, as none of these insect systems contain-
ing the smallest symbiont genomes are currently geneti-
cally tractable or even easily cultured in the lab. Progress
will have to come from creative biochemical and cell
biological experiments that complement the intriguing
genomic data described here.

Note added in proof

During the proof stage of this review, a paper was
accepted that confirmed the lack of functional gene
transfer to the aphid genome from its intracellular sym-
biont Buchnera. Two gene fragments from Buchnera
were found transferred to the aphid genome, but they
were not expressed and were highly degraded. This result
proves that genome reduction in Buchnera is not accom-
panied by gene transfer to the host [59].
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