

Convergent evolution of metabolic roles in bacterial co-symbionts of insects

John P. McCutcheon^{a,b,1}, Bradon R. McDonald^b, and Nancy A. Moran^b

^aCenter for Insect Science and ^bDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721

Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved July 20, 2009 (received for review June 9, 2009)

A strictly host-dependent lifestyle has profound evolutionary consequences for bacterial genomes. Most prominent is a sometimes-dramatic amount of gene loss and genome reduction. Recently, highly reduced genomes from the co-resident intracellular symbionts of sharpshooters were shown to exhibit a striking level of metabolic interdependence. One symbiont, called *Sulcia muelleri* (Bacteroidetes), can produce eight of the 10 essential amino acids, despite having a genome of only 245 kb. The other, *Baumannia cicadellinicola* (γ -Proteobacteria), can produce the remaining two essential amino acids as well as many vitamins. Cicadas also contain the symbiont *Sulcia*, but lack *Baumannia* and instead contain the co-resident symbiont *Hodgkinia cicadicola* (α -Proteobacteria). Here we report that, despite at least 200 million years of divergence, the two *Sulcia* genomes have nearly identical gene content and gene order. Additionally, we show that despite being phylogenetically distant and drastically different in genome size and architecture, *Hodgkinia* and *Baumannia* have converged on gene sets conferring similar capabilities for essential amino acid biosynthesis, in both cases precisely complementary to the pathways conserved in *Sulcia*. In contrast, they have completely divergent capabilities for vitamin biosynthesis. Despite having the smallest gene set known in bacteria, *Hodgkinia* devotes at least 7% of its proteome to cobalamin (vitamin B₁₂) biosynthesis, a significant metabolic burden. The presence of these genes can be explained by *Hodgkinia*'s retention of the cobalamin-dependent version of methionine synthase instead of the cobalamin-independent version found in *Baumannia*, a situation that necessitates retention of cobalamin biosynthetic capabilities to make the essential amino acid methionine.

cobalamin | genome reduction | genome sequencing | proteomics

The most dramatic example of the massive effects that a strict intracellular lifestyle can have on the evolution of the participating lineages is the eukaryotic mitochondrion, which evolved from a symbiosis of an α -Proteobacteria (1). Upon transitioning from a free-living bacterium to a cellular organelle, most, and in some cases all (2), of the symbiont genes were lost or transferred to the host nucleus, with the result that the mitochondrial proteome is a complex mosaic of products encoded in both genomes and showing different ancestral sources (3). Independent examples of genome reduction that are more evolutionarily recent but nearly as dramatic are found in the nutritional endosymbionts of insects: the four smallest cellular genomes reported to date are all insect symbionts that have formed a mutually obligate relationship with their hosts [*Hodgkinia cicadicola*, 144 kb (4); *Carsonella ruddii* PV, 160 kb (5); *Sulcia muelleri* GWSS, 246 kb (6); and *Buchnera aphidicola* Cc, 416 kb (7)]. In these cases, it is unclear if some of the lost symbiont genes are transferred to the host nucleus, but their extremely small gene sets suggest that the host plays some major role in the biology of the symbiont.

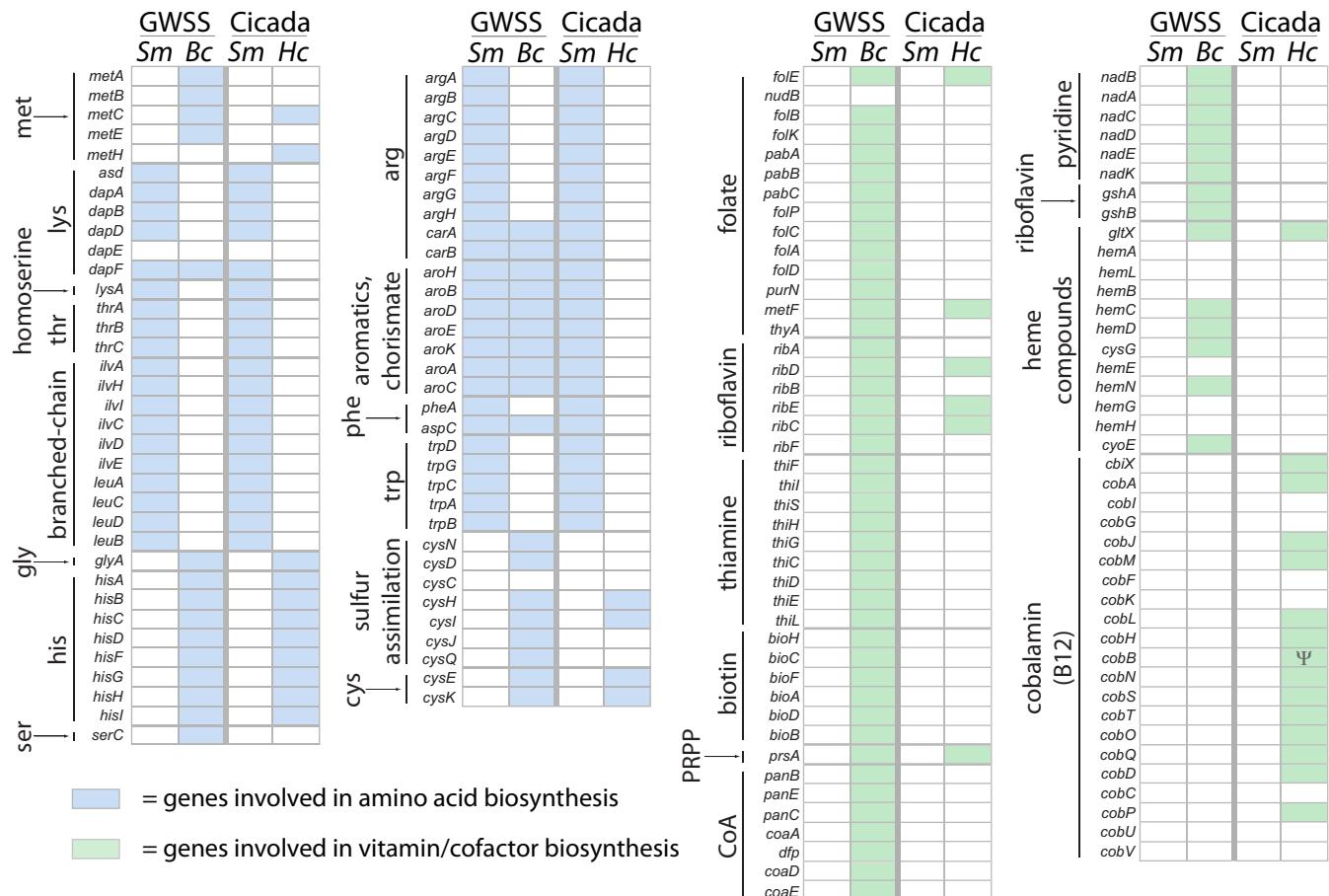
Insects that develop these intimate symbioses with bacteria usually have restricted diets, and it has long been predicted that a basis for the symbioses is nutritional (8, 9). Genome sequencing has dramatically confirmed this hypothesis, as the retained bacterial gene sets strongly suggest that the symbionts supply the host with compounds that are lacking in their diet (8, 10). Bacterial symbionts

are particularly common in insects that feed exclusively on plant sap, whether it is phloem, which is relatively rich in carbohydrates but poor in amino acids and vitamins, or xylem, which is limited in carbohydrates, amino acids, and vitamins (11). Xylem in particular is an extremely dilute food source and probably the least nutritive of any plant material used by herbivores (11).

Elaborate symbioses with a diversity of bacteria are found in the insect suborder Auchenorrhyncha, a large group of sap-feeding insects including sharpshooters, treehoppers, planthoppers, and spittlebugs (8, 12). The Auchenorrhynchan ancestor established a symbiosis with a Bacteroidetes called *Sulcia muelleri* approximately 280 million years ago, and during the diversification of this group many lineages have acquired an additional symbiont, usually from one of the classes of Proteobacteria (12). Recently, complete genomes were sequenced from the symbiont pair *Sulcia* (6) and *Baumannia cicadellinicola* (13) from the xylem-feeding Glassy-winged sharpshooter (GWSS). These genomes revealed a striking metabolic complementarity: the *Sulcia* genome encoded nearly complete biosynthetic pathways for eight of the 10 essential amino acids, while *Baumannia* possessed enzymatic pathways for the remaining two essential amino acids as well as the ability to produce a large number of vitamin cofactors (Fig. 1) (6, 13). Cicadas, also in the Auchenorrhyncha, feed exclusively on xylem sap from plant roots during their long underground juvenile stage (2–17 years, depending on the species) (14–16). Over the course of a few weeks during their last summer, they emerge from the ground, metamorphose into adults, mate, lay eggs, and die.

The symbionts of some cicadas are *Sulcia* and *H. cicadicola* (4, 12). *Hodgkinia* has the smallest cellular genome known (144 kb), a high guanine + cytosine (GC) content and an alternative genetic code (UGA Stop→Trp), an unprecedented combination of genomic features (4). Here we describe the complete genome of *Sulcia* from the cicada *Diceroprocta semicincta* (17), detail the metabolic contributions of the co-resident symbionts, *Sulcia* and *Hodgkinia*, and compare the putative nutritional contributions of these bacteria to their cicada host with the contributions of the GWSS symbionts.

Results


Sulcia from GWSS and Cicada Are Very Similar. Whole-genome alignments of *Sulcia* from cicada and GWSS show that despite diverging at least 200 million years ago (18), there are no rearrangements between the two genomes, only differential gene loss and retention (Fig. 2). This perfect colinearity has been observed previously in genomes from symbiont clades within the γ -Proteobacteria (19, 20), and our observation of the same phenomenon in the distantly related Bacteroidetes phylum

Author contributions: J.P.M. and N.A.M. designed research; J.P.M. and B.R.M. performed research; J.P.M., B.R.M., and N.A.M. analyzed data; and J.P.M. and N.A.M. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The sequence reported in this paper has been deposited in the GenBank database (accession no. CP001605).

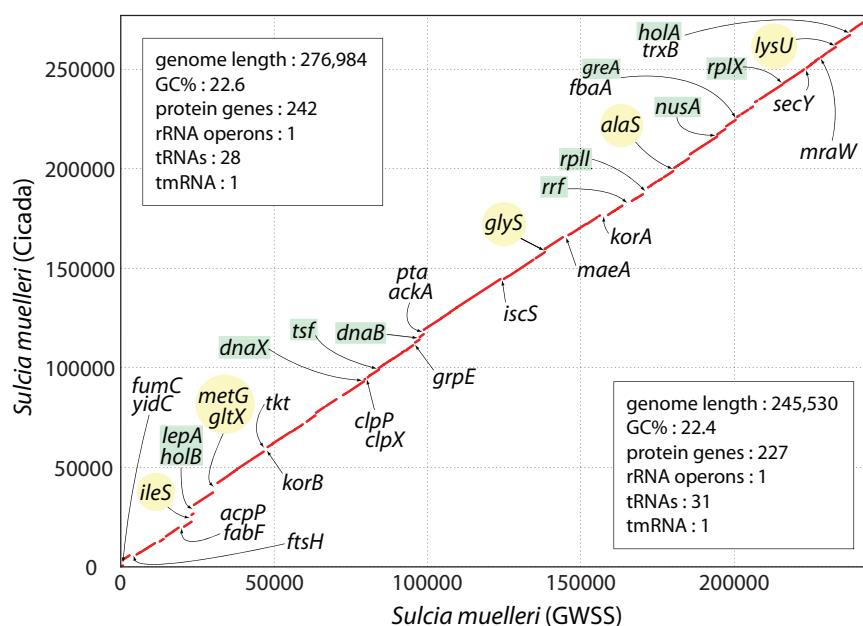

¹To whom correspondence should be addressed. E-mail: jmccutch@email.arizona.edu.

Fig. 1. Amino acid and vitamin-related gene contents of cicada and GWSS symbiont genomes. Abbreviations are *Sm*, *Sulcia muelleri*; *Bc*, *Baumannia cicadellinicola*; *Hc*, *Hodgkinia cicadicola*; and Ψ , pseudogene. Blue boxes represent amino acid biosynthesis genes that are present in a given genome, and green boxes represent vitamin biosynthesis genes. Note the pattern of conservation evident in amino acid biosynthesis genes but lacking in vitamin biosynthesis genes.

indicates that this unusual level of conservation of gene order is a general trend in symbiont genomes, regardless of their phylogenetic origin. The most striking difference in gene content

between the two genomes is the retention in the *Sulcia* of cicada, but not of GWSS, of six aminoacyl tRNA synthetase genes (*ileS*, *metG*, *gltX*, *glyS*, *alaS*, and *lysU*), as well as many other apparent

Fig. 2. Genome conservation in cicada and GWSS *Sulcia* genomes. The cicada *Sulcia* genome is represented on the y axis and described in the top left box, and the GWSS *Sulcia* genome is represented on the x axis and described in the bottom right box. The red line indicates shared synteny between the two genomes. Gene names in the lower triangle are found in the GWSS *Sulcia* genome but not in the cicada *Sulcia* genome; gene names in the upper triangle are present in the cicada *Sulcia* genome but not in GWSS. Genes involved in replication, transcription, and translation are highlighted; aminoacyl tRNA synthetase genes are shown in yellow circles, and all others are shown in green boxes. Only named genes with clear functions were included in the figure for clarity; hypothetical genes, conserved hypothetical genes, and genes with ambiguous functions were omitted.

homologs of genes involved in replication (the DNA polymerase III holoenzyme components encoded by *holA*, *holB*, and *dnaX* and the replicative DNA helicase encoded by *dnaB*), transcription (the transcription elongation and termination factors encoded by *greA* and *nusA*), and translation (the ribosomal proteins encoded by *rplI* and *rplX* and the ribosomal elongation and recycling factors encoded by *tsf*, *leP*, and *rrf*) (Fig. 2).

The Roles of *Sulcia* and Its Coprimary Symbiont Are Conserved in Amino Acid Biosynthesis. In both the GWSS and cicada systems, genomic sequences support the production of eight of the 10 essential amino acids by *Sulcia* (arginine, phenylalanine, tryptophan, lysine, threonine, isoleucine, leucine, and valine), and the remaining two (methionine and histidine) by *Baumannia* in GWSS and by *Hodgkinia* in cicada (Fig. 1, blue boxes). Thus, although arising from very different bacterial groups, *Hodgkinia* and *Baumannia* have converged upon functionally similar gene sets with respect to amino acid synthesis. The most important differences in the amino acid metabolisms of *Baumannia* and *Hodgkinia* are in the methionine biosynthetic pathway. In *Hodgkinia*, no homologs for homoserine O-succinyltransferase (*metA*) and O-succinylhomoserine(thiol) lyase (*metB*) can be found by sequence comparisons, so it is unclear how cystathionine is synthesized in this system. [Cystathionine is present in plant root exudate (21, 22), possibly obviating the need for *metA* and *metB* in *Hodgkinia* since cicadas feed primarily on plant roots.] Both *Baumannia* and *Hodgkinia* have a homolog of *MetC*, which converts cystathionine into homocysteine. It is in the last step of the pathway, the conversion of homocysteine into methionine, where *Baumannia* and *Hodgkinia* diverge: *Baumannia* uses the cobalamin (vitamin B₁₂)-independent version of methionine synthase (*MetE*), whereas *Hodgkinia* uses the cobalamin-dependent version of the enzyme (*MetH*).

The vitamin and cofactor biosynthetic capabilities of *Baumannia* and *Hodgkinia* are extremely different. In contrast to the convergence of gene sets related to amino acid biosynthetic capabilities in *Baumannia* and *Hodgkinia*, there is very little overlap in vitamin and cofactor biosynthetic capabilities of these organisms (Fig. 1, green boxes). The only significant overlap is in genes devoted to riboflavin synthesis, where three of five genes in the pathway can be found in *Hodgkinia*. What is striking, especially considering the extremely small size of the *Hodgkinia* genome, is the presence of 13 identifiable genes with intact ORFs (plus one apparent pseudogene), homologous to genes devoted to the synthesis of cobalamin.

Cobalamin is a complex small molecule which requires approximately 20–25 enzymatic steps for its biosynthesis (23, 24), although there is a great deal of diversity in cobalamin-related genes in different organisms (25). Some free-living α -Proteobacteria such as *Mesorhizobium loti* have a complete or nearly complete set of cobalamin synthesis genes, while others such as *Caulobacter crescentus* have a highly fragmentary set of only two genes (26). The *Hodgkinia* genome contains homologs of the the *cobN*, *cobS*, and *cobT* cobalt insertion genes, indicating that it uses the aerobic, or late cobalt insertion, version of the pathway, although a copy of *cblX* is present in the genome. It is unclear what the final structure of this cobalamin-like molecule would be in *Hodgkinia*: homologs of genes involved in cobalt insertion (*cobNST*) and adenosylation (*cobO*) are present, but genes involved in the synthesis and addition of the dimethylbenzimidazole moiety (*cobU* and *cobV*), among others, are apparently missing.

Discussion

A tightly integrated metabolic complementarity between *Sulcia* and *Baumannia* from GWSS was inferred from genome sequencing of the symbionts: *Sulcia* produces eight of 10 essential amino acids, and *Baumannia* produces the remaining two essential amino acids as well as a number of vitamins (6, 13). Evidence

from phylogenetics (12) and the fossil record (18) indicates that a symbiosis with *Sulcia* evolved by 270 million years ago in an ancestor of Auchenorrhyncha (12) and that the divergence of GWSS and cicada occurred at least 200 million years ago, during the early Jurassic (18). Since their divergence, GWSS and cicada have each acquired one additional symbiont, *Baumannia* (γ -Proteobacteria) and *Hodgkinia* (α -Proteobacteria), respectively. By sequencing the genomes of both *Sulcia* and *Hodgkinia* from cicada, we sought to uncover the genomic changes that had occurred in the two *Sulcia* strains over hundreds of millions of years as well as to delineate how this system distributed the metabolic roles of *Sulcia* and its partner symbiont when compared to the case of GWSS.

The *Sulcia* genomes from GWSS and cicada are very similar (Fig. 2). Genes that are retained in both members of the genome pair are perfectly co-linear, despite at least 200 million years of divergence. Similar levels of genomic stability have been observed for other highly reduced symbiont genomes for which there are at least two complete genomes from the same clade, that is, the four *Buchnera* genomes reflecting divergence over about 150 million years (7, 19, 27, 28) and the two genomes from the ant symbiont *Blochmannia* reflecting divergence over about 20 million years (20, 29). This conserved genomic organization reflects a lack of recombination and lateral gene transfer, possibly resulting from a loss of pathways involved in DNA uptake and recombination (19, 30). Differential gene loss is therefore the only remaining process shaping genome organization in *Sulcia*. Both *Buchnera* and *Blochmannia* arose from the same group of γ -Proteobacteria; our observation of extreme genome stability in *Sulcia* extends this finding to a distantly related Bacteroidetes symbiont.

Because *Sulcia*'s cosymbionts in GWSS and cicada differ drastically in genome size (*Baumannia*, 686 kb; *Hodgkinia*, 144 kb) and gene content (Fig. 1), one might expect the patterns of loss and retention in the two *Sulcia* genomes to reflect the genome complexity of the cosymbiont—that is, *Sulcia* from cicada would be larger and contain genes that compensate for the genes missing in *Hodgkinia* compared to *Baumannia*. Comparisons of genome sizes suggested this might be true, as the *Sulcia* genome is indeed bigger in cicada (277 kb vs. 246 kb) and contains more protein-coding genes (242 vs. 227), but further analysis did not produce significant evidence for any compensatory patterns. Many of the genes retained in cicada *Sulcia* while lost from GWSS *Sulcia* are involved in replication, transcription, and translation (17 of 24 identifiable genes, or 71%); in particular, six are aminoacyl tRNA synthetases (Fig. 3). This retention of aminoacyl tRNA synthetase genes suggested the hypothesis that, in cicada, *Sulcia* might be compensating for the tiny genome of its companion symbiont *Hodgkinia* by providing a source of aminoacylated tRNAs. Comparisons of the aminoacyl tRNA synthetases and tRNA populations of the two bacteria did not give strong evidence for this, as four of the six synthetases retained in cicada *Sulcia* are also present in *Hodgkinia* (Fig. 3). Furthermore, the arginyl-, aspartyl-, threonyl-, and cysteinyl-tRNA synthetases cannot be identified by sequence comparisons in either *Sulcia* or *Hodgkinia*, and only 15 tRNAs can be identified computationally in *Hodgkinia*, raising questions as to how translation occurs in these organisms. Other systems with non-canonical translation apparatuses suggest some possible solutions to these seemingly intractable problems. For example, some Archaea have split tRNA genes, some of which are not identifiable by standard computational searches (31). Additionally, many methanogenic archaea form cysteinyl-tRNA in the absence of cysteinyl-tRNA synthetase by an unusual biochemical route (32).

The *Sulcia* genome is among the smallest of any cellular organism, and it has been suggested that other symbiotic bacteria with tiny genomes, such as *Carsonella* (160 kb) and *B. aphidicola* Cc (422 kb), have crossed an evolutionary threshold that will ultimately result in their extinction and possible replacement by another symbiont (7, 33). Were that the case in *Sulcia*, one would expect a relaxation of

tRNA synthetase	Glassy-winged sharpshooter		Cicada	
	<i>Sulcia</i>		<i>Baumannia</i>	
	tRNAs	tRNAs	tRNAs	tRNAs
<i>valS</i>	UAC	UAC,GAC	UAC	
<i>ileS</i>	GAU	GAU	GAU	GAU
<i>proS</i>	UGG	UGG,GGG	UGG	UGG
<i>hisS</i>	GUG	GUG	GUG	GUG
<i>trpS</i>	CCA	CCA	CCA	UCA ¹
<i>metG</i>	CAU (3)	CAU (3)	CAU (3)	CAU (3)
<i>gltX</i>	UUC	UUC (2)	UUC	UUC ²
<i>pheS</i>	GAA	GAA	GAA	
<i>pheT</i>	
<i>alaS</i>	UGC	UGC,GGC	UGC	UGC
<i>glyS</i>	GCC,UCC	GCC,UCC	GCC,UCC	GCC,UCC
<i>glyQ</i>
<i>serS</i>	UGA,GCU,GGA	UGA,GCU,GGA	UGA,GCU	
<i>asnS</i>	GUU	GUU	GUU	
<i>tyrS</i>	GUA	GUA	GUA	
<i>glnS</i>	UUG	UUG,CUG	UUG	UUG ²
<i>lysS</i>	UUU	UUU	UUU	UUU
<i>leuS</i>	UAA,GAG,UAG, CAA	UAA,GAG,UAG, CAA,CAG	UAA,GAG,UAG, CAA	
<i>argS</i>	UCU,ACG,CCU	UCU,ACG,CCU, CCG	UCU,ACG	
<i>aspS</i>	GUC	GUC	GUC	
<i>thrS</i>	UGU,GGU	UGU,GGU,CGU	UGU	
<i>cysS</i>	GCA	GCA	GCA	GCA

Fig. 3. The aminoacyl tRNA synthetases and tRNAs found in cicada and GWSS symbiont genomes. Presence of an aminoacyl tRNA synthetase is indicated by shading in the column for each organism, light gray for GWSS symbionts and darker gray for cicada symbionts. The tRNAs that could be identified by computational methods are listed by anticodon sequences, and a parenthetical number indicates that many with an identical anticodon. Ellipses are shown for the second gene in a two component aminoacyl tRNA synthetase; refer to the box directly above for the relevant anticodon(s). ¹The tRNA-tryptophan in *Hodgkinia* is predicted to read both UGA and GGA codons because of the UGA Stop→Trp recoding in that genome (4). ²*Hodgkinia* has homologs of the *gatA* and *gatB* genes involved in generating tRNA-Gln from tRNA-Glu (44), potentially eliminating the need for *glnS* in this genome.

purifying selection (negative selection against deleterious mutations) on its protein-coding sequences. The completion of a second *Sulcia* genome allows us to gain some insight into genome degradation by calculating the ratios of synonymous changes to nonsynonymous changes (dN/dS) for pairs of protein-coding genes shared between the two genomes. This analysis shows that *Sulcia* genes are subject to strong purifying selection (average dN/dS = 0.066, ± 0.045); however this value should be interpreted cautiously because the dS value is at or near saturation (5.942 ± 17.292). Nonetheless, the low average dN value (0.142 ± 0.082) indicates efficient purifying selection despite the remarkably small genome size. Thus, *Sulcia* shows no signs of having crossed any threshold that would result in its elimination. Indeed, the two *Sulcia* genomes are remarkably conserved considering that they have been evolving separately for at least 200 million years (18). In particular, they show complete co-retention of genes involved in essential amino acid biosynthesis. Additionally, some of the most abundant proteins in the *Sulcia* proteome are involved in essential amino acid biosynthesis (18/28, or 64% of identifiable proteins), exactly what would be expected for a symbiont whose central function in the symbiosis is to make essential amino acids (Table 1).

Cobalamin biosynthesis genes have never before been found in an insect symbiont genome. The likely reason these genes occur in *Hodgkinia* is its use of MetH, the cobalamin-dependent version of methionine synthase, instead of MetE for the last step in methionine synthesis, as in other known insect symbionts. No other cobalamin-

requiring enzymes can be found in the *Hodgkinia* genome. Additionally, insects are not thought to require cobalamin, as none of the 19 complete insect genomes contain any cobalamin-dependent homologs (34). Most γ -Proteobacteria with large genomes have copies of both *metE* and *metH* in their genomes, while the ability to make cobalamin de novo from uroporphyrinogen-III shows a patchy phylogenetic distribution (e.g., *E. coli* can only carry out the last few steps of cobalamin biosynthesis (35), and *H. influenzae* cannot do any, but both have both *metE* and *metH* in their genome). Previously studied γ -Proteobacterial insect symbionts with methionine synthase capabilities have lost *metH* and retained *metE* in the process of genome reduction (Table 2), allowing the last step in methionine biosynthesis to be carried out without the metabolic burden of cobalamin biosynthesis or import.

The patterns of retention of *metE*, *metH*, and cobalamin biosynthesis genes are less clear in the Rhizobiales, the order of α -Proteobacteria which encompasses *Hodgkinia* and its closest free-living relatives (4). Some members of this group have large genomes and retain both *metE* and *metH*, while others retain only *metH*, and most have complete cobalamin biosynthetic capabilities (Table 2). Given this patchy distribution of *metE* and *metH*, two evolutionary scenarios can be constructed to explain the presence of *metH* and cobalamin biosynthesis genes in *Hodgkinia*. The simplest explanation is that the ancestor of *Hodgkinia* had a gene complement similar to extant *Sinorhizobium meliloti*, which has genes for the biosynthesis of cobalamin and *metH*, but no *metE* (Table 2). Alternatively, the *Hodgkinia* ancestor could have been similar in gene content to modern *Bradyrhizobium japonicum*, which has *metH*, *metE*, and cobalamin synthesis genes, but then lost *metE* during the random events of genome reduction. In either case, a requirement for methionine by all three organisms in the symbiosis would impose a strong selective pressure to maintain *metH* along with the complex cobalamin biosynthetic pathway. A parallel case of *metE* loss followed by cobalamin auxotrophy was recently demonstrated in algae (36), giving some plausibility to the second more complicated *metE* loss scenario. During algal diversification, various unrelated lineages have lost *metE* but retained *metH*, thereby imposing a requirement for an exogenous source of cobalamin, which has been shown to come from an extracellular symbiosis with bacteria (36).

GWSS and cicadas are thought to feed exclusively on xylem sap (11, 14, 37, 38). It is therefore reasonable to expect that their symbiont pairs would collectively make the same nutritional contributions. Analysis of inferred metabolic capabilities of the four symbiont genomes indicates that this is true for essential amino acids, but not for vitamins, as *Hodgkinia* is missing most vitamin and cofactor biosynthetic pathways (Fig. 1), implying that the cicada and its symbionts have access to external sources of these required micronutrients. Both sharpshooters and cicadas typically have broad host plant ranges, and this is true for both GWSS (11) and *Diceroprocta* (13, 37) in particular. The fundamental difference in feeding habits between cicadas and sharpshooters is that cicadas spend most of their lives underground and feed primarily on plant roots (14, 16). The plant root-soil interface, or rhizosphere, is a complex environment. Roots form symbioses with microbes, extract water and nutrients from the soil, and exude large amounts of metabolites, including amino acids and simple amides, carbohydrates, fatty acids, and vitamins into the surrounding soil (21, 22). While cicadas are only known to feed on xylem sap (14), it could be the concentration of metabolites in plant root xylem is different from that in other parts of the plant, arising from compounds from the root exudate or soil, and that cicadas are somehow able to assimilate the necessary vitamins in this way. Another hypothesis is that an additional symbiotic microorganism is present, but this possibility was excluded by a computational screen of our sequence data. The only genomes present are those of *Hodgkinia*, *Sulcia*, and host, suggesting that all nutritional needs must be satisfied based

Table 1. Protein abundance in the *Sulcia* proteome ranked by emPAI value (42)

Gene	Pathway	General function	emPAI	Number of peptides
AroG/PheA	Phe and Trp synthesis	Amino acids	4.89	17
GroL	Chaperonin Hsp60	Protein folding	3.21	19
IlvC	Branched-chain aa synthesis	Amino acids	2.76	10
DnaK	Chaperonin Hsp70	Protein folding	2.48	18
GapA	Glycolysis	General metabolism	2.00	8
Asd	Branched-chain aa synthesis	Amino acids	1.72	9
AroB	Phe and Trp synthesis	Amino acids	0.79	6
LeuA	Leu synthesis	Amino acids	0.62	5
LeuC	Leu synthesis	Amino acids	0.55	2
TktA	Pentose phosphate synthesis	General metabolism	0.54	2
ArgC	Arg synthesis	Amino acids	0.45	4
TrpB/TrpF	Trp synthesis	Amino acids	0.43	6
IlvD	Branched-chain aa synthesis	Amino acids	0.41	6
Fba	Glycolysis	General metabolism	0.41	4
TrpA	Trp synthesis	Amino acids	0.27	2
DapA	Lys synthesis	Amino acids	0.26	2
TrpC	Trp synthesis	Amino acids	0.25	2
CarB	Arg synthesis	Amino acids	0.22	7
HtpG	Heat shock protein 90	Protein folding	0.21	4
TktB	Pentose phosphate synthesis	General metabolism	0.21	2
ArgF	Arg synthesis	Amino acids	0.21	2
IlvE	Branched-chain aa synthesis	Amino acids	0.19	2
SucB	TCA cycle	General metabolism	0.18	2
AroC	Phe and Trp synthesis	Amino acids	0.18	2
ThrC	Branched-chain aa synthesis	Amino acids	0.15	2
Lpd	TCA cycle	General metabolism	0.14	2
ArgG/ArgA	Arg synthesis	Amino acids	0.11	2
SucA	TCA cycle	General metabolism	0.07	2

Protein abundance in the *Sulcia* proteome ranked by emPAI value (42). Only proteins with at least 2 high-quality peptides are listed. This should not be considered a complete list of expressed proteins, because the complexity of the sample does not allow an exhaustive search for all peptides. *Sulcia* is not currently culturable, and therefore the sample is derived from insect tissue and is a mixture of host proteins together with *Sulcia* and *Hodgkinia* proteins.

solely on the diet and the metabolic capabilities of these three organisms.

Hodgkinia is present in distantly related cicadas (genus *Magicianada*) (4), suggesting that the original infection is ancient and that the extremely tiny *Hodgkinia* genome reflects a long period of genome reduction. Some of *Hodgkinia*'s closest relatives are rhizosphere-associated or root nodule-forming bacteria (4), and it is tempting to speculate that these could have been the initial source of bacteria for the establishment of the cicada-*Hodgkinia* symbiosis.

Regardless of *Hodgkinia*'s origin, a comparison of its amino acid biosynthetic capabilities with *Baumannia*'s reveals a remarkable case of convergent evolution, especially considering the vast differences between the two genomic architectures.

Materials and Methods

Genome Sequencing and Annotation. Female cicadas were collected in and around Tucson, Arizona, and their bacteriomes were dissected in 95% ethanol. Genomic DNA was purified using QIAGEN DNeasy Blood & Tissue Kits and pre-

Table 2. Distribution of methionine synthase genes in bacterial genomes

Bacterial class	Organism	Genome size (Mb)	<i>metE</i>	<i>metH</i>	No. of Cobalamin biosynthesis genes
γ -Proteobacteria	<i>Pseudomonas</i>	6.26	+	+	22
	<i>Salmonella</i>	4.86	+	+	19
	<i>Escherichia</i>	4.64	+	+	5
	<i>Haemophilus</i>	1.83	+	+	0
	<i>Blochmannia</i>	0.71	+	-	0
	<i>Baumannia</i>	0.69	+	-	0
	<i>Buchnera</i>	0.64	+	-	0
α -Proteobacteria	<i>Bradyrhizobium</i>	9.11	+	+	21
	<i>Mesorhizobium</i>	7.04	+	+	21
	<i>Agrobacterium</i>	4.92	+	+	20
	<i>Sinorhizobium</i>	3.65	-	+	20
	<i>Brucella</i>	3.29	-	+	21
	<i>Rickettsia</i>	1.11	-	-	0
	<i>Hodgkinia</i>	0.14	-	+	13

Distribution of methionine synthase genes in bacterial genomes. The bacterial genomes are listed in order of decreasing genome size within each class. Cobalamin-independent methionine synthase, *metE*; cobalamin-dependent methionine synthase, *metH*.

pared for Roche 454 GS FLX pyrosequencing as directed by the manufacturer. The sequencing run generated 523,979 reads totaling 116,176,938 bases that assembled into 1,029 contigs greater than 500 bases using the GS De novo Assembler (version 1.1.03.24). Contigs expected to belong to the *Sulcia* genome were identified by BLASTX searches against the GenBank non-redundant database, and reads associated with these contigs were extracted and reassembled to generate the *Sulcia* genome. Reassembly produced 41 contigs representing 269,151 bases with an average depth of 29× and a GC content of 22.9%. The order and orientation of some of the 41 contigs were predicted using the ".fm" and ".to" information appended to read names encoded in the 454Contigs.ace file. All contig joins were confirmed using PCR amplification followed by Sanger sequencing.

Errors in homopolymeric run lengths were corrected by mapping 12,965,640 Illumina/Solexa reads of 39 bases to the genome using either MUMMER (nucmer -b 10 -c 30 -g 2 -l 12; show-snps -rT -x 30) or BLASTN (-G 2 -E 1 -F F -e 1e-8 -W 7 -b 1 -v 1). Average coverage in Illumina reads on the *Sulcia* genome was 164×. Any remaining uncertainties in homopolymer lengths, in particular those that shifted a seemingly conserved coding sequence out of frame and were not well covered by Illumina reads, were checked by PCR followed by Sanger sequencing.

Post Genome Analysis. Whole genome alignments were generated with primer from the MUMMER package (39). The genome was annotated as described previously (6).

The genomes used in the generation of Table 2 were: *Pseudomonas aeruginosa* PAO1 (NC_002516), *Salmonella enterica* LT2 (NC_003197), *Escherichia coli* K-12 substr. MG1655 (NC_000913), *Haemophilus influenzae* Rd KW20 (NC_000907), *Blochmannia floridanus* (NC_005061), *Baumannia cicadellinicola* Hc (NC_007984), *Buchnera aphidicola* APS (NC_002528), *Bradyrhizobium japonicum* USDA 110 (NC_004463), *Mesorhizobium loti* MAFF303099 (NC_002678), *Agrobacter tumefaciens* C58 (NC_003062, NC_003063), *Sinorhizobium meliloti*

- Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. *Science* 283:1476–1481.
- Williams BA, Hirn RP, Luccoq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian *Trachipleistophora hominis*. *Nature* 418:865–869.
- Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: Gene loss and transfer to the nucleus. *Mol Phylogenet Evol* 29:380–395.
- McCutcheon JP, McDonald BR, Moran NA (2009) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. *PLoS Genet* 5:e1000565.
- Nakabachi A, et al. (2006) The 160-kilobase genome of the bacterial endosymbiont *Carsonella*. *Science* 314:267.
- McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. *Proc Natl Acad Sci USA* 104:19392–19397.
- Perez-Brocal V, et al. (2006) A small microbial genome: The end of a long symbiotic relationship? *Science* 314:312–313.
- Buchner P (1965) In *Endosymbiosis of Animals with Plant Microorganisms* (Interscience, New York).
- Douglas AE (1989) Mycetocyte symbiosis in insects. *Biol Rev Camb Philos Soc* 64:409–434.
- Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. *Annu Rev Genet* 42:165–190.
- Redak RA, et al. (2004) The biology of xylem fluid-feeding insect vectors of *Xylella fastidiosa* and their relation to disease epidemiology. *Annu Rev Entomol* 49:243–270.
- Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the Bacterial phylum Bacteroidetes. *Appl Environ Microbiol* 71:8802–8810.
- Wu D, et al. (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. *PLoS Biol* 4:e188.
- White J, Strehl CE (1978) Xylem feeding by periodical cicada nymphs on tree roots. *Ecol Entomol* 3:323–327.
- Glinski RL, Ohmart RD (1984) Factors of reproduction and population densities in the Apache cicada (*Diceroprocta apache*). *Southwest Nat* 29:73–79.
- Williams K, Simon C (1995) The ecology, behavior, and evolution of periodical cicadas. *Annu Rev Entomol* 40:269–295.
- Davis WT (1928) Cicadas belonging to the genus *Diceroprocta* with descriptions of new species. *J NY Entomol Soc* 36:439–460.
- Shcherbakov DE, Popov YA (2002) Superorder Cimicidae Laicharting, 1781; Order Hemiptera Linne, 1758. The bugs, cicadas, plantlice, scale insects, etc. In *History of Insects*, eds Rasnitsyn AP, Quicke DLJ (Kluwer, Dordrecht), pp 143–157.
- Tamas I, et al. (2002) 50 million years of genomic stasis in endosymbiotic bacteria. *Science* 296:2376–2379.
- Degnan PH, Lazarus AB, Wernegreen JJ (2005) Genome sequence of *Blochmannia pennsylvanicus* indicates parallel evolutionary trends among bacterial mutualists of insects. *Genome Res* 15:1023–1033.
- Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. *Plant Soil* 256:67–83.
- Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In *The Rhizosphere: Biochemistry and Organic Substances at the Soil Interface*, eds Pinton R, Varani Z, Nannipieri P (Marcel Dekker Inc, New York), pp 19–40.
- 1021 (NC_003047), *Brucella melitensis* 16M (NC_003317, NC_003318), and *Rickettsia prowazekii* str. Madrid E (NC_000963). The values for the number of genes involved in cobalamin biosynthesis were from (26) and (40).
- The dn/dS values for 203 pairs of protein-coding sequences from *Sulcia* of GWSS and cicada were calculated using the CODEML package from PAML (41) after aligning protein sequences using the linsi module of MAFFT (42) and making nucleotide-based alignments from these protein alignments using PAL2NAL (43).
- Proteomics was performed as described (4). The exponentially modified protein abundance index (emPAI) is a rough measure of relative protein amounts in complex mixtures, derived from the number of sequenced peptides and normalized by the expected number per protein. Only those proteins with two high-quality peptide hits [as described in (4)] were included in Table 1.
- To screen for other bacteriome-dwelling symbionts, the 454AllContigs.fna file from the 454 assembly (containing all contigs composed of at least two reads; 31,890 sequences comprising 7,732,561 bps) was searched against small ribosomal subunit RNA sequences (SSUs) from the Ribosomal Database Project release 8.1 (34,530 SSU sequences comprising 29,402,220 bps from bacterial, archaeal, and eukaryal sources) using blastn (-b 10 -v 10 -e 1e-10). The only hits were to sequences from insect 18S rDNA, insect mitochondrial 16S rDNA, Bacteroidetes 16S rDNA, and α -Proteobacterial 16S rDNA. Any other symbiont present in the bacteriome at an appreciable level should have been well sampled owing to the massive depth of coverage generated by 454 sequencing.

ACKNOWLEDGMENTS. We thank F. Chen, K. Barry, and colleagues at the DOE Joint Genome Institute for 454 and Solexa sequencing runs and Q. Lin at the State University of New York at Albany Proteomics facility for performing the proteomic analysis. This work was supported by National Science Foundation Microbial Genome Sequencing award 0626716 (to N.A.M.) and the University of Arizona's Center for Insect Science through National Institutes of Health Training Grant 1K 12 GM00708 (to J.P.M.).